This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110028 #20 May 26 2023 10:48:24 %S A110028 23,223,227,337,353,373,557,577,733,757,773,22573,23327,25237,25253, %T A110028 25523,27253,27527,32233,32237,32257,32323,32327,33223,33353,33377, %U A110028 33533,33773,35227,35353,35533,35537,35573,35753,37223,37337,52237,52253,52727,53353 %N A110028 Primes with a prime number of digits, all of them prime, that add up to a prime. %C A110028 First 7-digit number in this sequence is 2222333. %C A110028 From _Michael De Vlieger_, Feb 02 2019: (Start) %C A110028 First p-digit number in this sequence: %C A110028 2 23 %C A110028 3 223 %C A110028 5 22573 %C A110028 7 2222333 %C A110028 11 22222222223 %C A110028 13 2222222225323 %C A110028 17 22222222222225237 %C A110028 19 2222222222222223527 %C A110028 23 22222222222222222232723 %C A110028 29 22222222222222222222222222577 %C A110028 31 2222222222222222222222222232257 %C A110028 37 2222222222222222222222222222222235773 %C A110028 ... %C A110028 (End) %H A110028 Michael De Vlieger, <a href="/A110028/b110028.txt">Table of n, a(n) for n = 1..10000</a> %e A110028 22573 is a term because 22573 is prime, it has five digits (5 is a prime), all digits (2,3,5,7) are prime, and the sum of the digits is 2+2+5+7+3 = 19, which is also a prime. %p A110028 a:=proc(n) local nn: nn:=convert(n,base,10): if isprime(n) and isprime(nops(nn)) and map(isprime,nn)=[seq(true,i=1..nops(nn))] and isprime(add(nn[j],j=1..nops(nn))) then n fi end: seq(a(k),k=1..60000); # _Emeric Deutsch_, Apr 02 2006 %t A110028 Select[Prime@ Range@ 6000, And[PrimeQ@ Length@ #, AllTrue[#, PrimeQ], PrimeQ@ Total@ #] &@ IntegerDigits@ # &] (* or *) %t A110028 With[{p = {2, 3, 5, 7}}, Table[Select[FromDigits /@ Select[Tuples[p, {q}], PrimeQ@ Total@ # &], PrimeQ], {q, Prime@ Range@ 3}]] // Flatten (* _Michael De Vlieger_, Feb 02 2019 *) %o A110028 (Python) %o A110028 from sympy import isprime, nextprime %o A110028 from itertools import islice, product %o A110028 def agen(): # generator of terms %o A110028 p = 2 %o A110028 while True: %o A110028 for d in product("2357", repeat=p-1): %o A110028 for last in "37": %o A110028 if isprime(sum(map(int, s:="".join(d) + last))): %o A110028 if isprime(t:=int(s)): %o A110028 yield t %o A110028 p = nextprime(p) %o A110028 print(list(islice(agen(), 40))) # _Michael S. Branicky_, May 26 2023 %Y A110028 Cf. A000040, A062088. %K A110028 nonn,base %O A110028 1,1 %A A110028 _Sergio Pimentel_, Mar 31 2006