cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110037 Signed version of A090678 and congruent to A088567 mod 2.

This page as a plain text file.
%I A110037 #9 Aug 24 2025 18:27:45
%S A110037 1,1,-1,0,0,1,0,-1,0,1,-1,0,1,0,0,-1,0,1,-1,0,0,1,0,-1,1,0,-1,0,1,0,0,
%T A110037 -1,0,1,-1,0,0,1,0,-1,0,1,-1,0,1,0,0,-1,1,0,-1,0,0,1,0,-1,1,0,-1,0,1,
%U A110037 0,0,-1,0,1,-1,0,0,1,0,-1,0,1,-1,0,1,0,0,-1,0,1,-1,0,0,1,0,-1,1,0,-1,0,1,0,0,-1,1,0,-1,0,0,1,0,-1,0
%N A110037 Signed version of A090678 and congruent to A088567 mod 2.
%C A110037 a(n) = (-1)^[n/2]*A090678(n) = A088567(n) mod 2, where A088567(n) equals the number of "non-squashing" partitions of n. a(n) = -A110036(n)/2 for n>=2, where the A110036 gives the partial quotients of the continued fraction expansion of 1 + Sum_{n>=0} 1/x^(2^n).
%F A110037 G.f.: A(x) = 1+x - x^2*(1+x)/(1+x^2) + Sum_{k>=1} x^(3*2^(k-1))/Product_{j=0..k} (1+x^(2^j)).
%F A110037 Conjecture: a(n) = A073089(n) - A073089(n+1) for n >= 2. - _Alan Michael Gómez Calderón_, Aug 19 2025
%o A110037 (PARI) {a(n)=polcoeff(A=1+x-x^2*(1+x)/(1+x^2)+ sum(k=1,#binary(n),x^(3*2^(k-1))/prod(j=0,k,1+x^(2^j)+x*O(x^n))),n)}
%Y A110037 Cf. A110036, A090678, A088567, A073089.
%K A110037 sign,changed
%O A110037 0,1
%A A110037 _Paul D. Hanna_, Jul 09 2005