A110081 Integers n such that the digit set D = (0, 1, -n) used in base 3 expansions of the form Sum_{ -N < j < oo} d_j 3^{-j}, all d_j in D, can represent all real numbers.
1, 7, 25, 31, 37, 73, 79, 85, 97, 103, 193, 241, 253, 271, 313, 319, 337, 343, 361, 517, 553, 661, 703, 721, 727, 733, 745, 751, 781, 799, 805, 865, 925, 943, 967, 1015, 1039, 1081, 1087, 1633, 1687, 1705, 1837, 1981, 2125, 2137, 2143, 2185, 2191, 2233, 2257, 2263, 2341, 2581, 2593, 2605, 2641, 2719, 2761, 2797, 2815, 2833, 2857, 2887, 2893, 2911, 3127
Offset: 1
Examples
13/18 = 0.122111111111... in ternary which can't be represented without the 2's. But it is 10.x0111111111... if x = -7: 3 + 0 + (-7)/3 + 1/3^3 + 1/3^4 + 1/3^5 + ... = 3 - 7/3 + (1/27)/(1-(1/3)) = 13/18.
References
- J. C. Lagarias, Crystals, Tilings and Packings, Hedrick Lectures, Math. Assoc. America MathFest, 2005.
Links
- Joerg Arndt, Table of n, a(n) for n = 1..1000
- David W. Matula, Basic digit sets for radix representation, J. Assoc. Comput. Mach. 29 (1982), 1131-1143.
- Don Reble, Python Program
Extensions
More terms using Don Reble's program from Joerg Arndt, Sep 17 2017
Comments