cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110099 Number of return steps to the line y = x from the line y = x+1 (i.e., E steps from the line y = x+1 to the line y = x) in all Delannoy paths of length n.

Original entry on oeis.org

0, 1, 8, 53, 332, 2029, 12236, 73193, 435480, 2581273, 15258256, 90005981, 530071076, 3117718213, 18318316948, 107537570513, 630844709168, 3698457841201, 21671720364056, 126932183197061, 743158103135484
Offset: 0

Views

Author

Emeric Deutsch, Jul 11 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).

Examples

			a(2) = 8 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely DD, DN(E), DEN, N(E)D, N(E)N(E), N(E)EN, ND(E), NNE(E), END, ENN(E), ENEN, EDN and EENN, one has altogether 8 return steps to the line y = x from the line y = x+1 (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z*R^3/(1-z*R^2)^2: Gser:=series(G,z=0,30): 0,seq(coeff(Gser,z^n),n=1..24);
  • Mathematica
    CoefficientList[Series[x*((1-x-Sqrt[1-6*x+x^2])/2/x)^3/(1-x*((1-x-Sqrt[ 1-6*x+x^2])/2/x)^2)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)

Formula

a(n) = Sum_{k=0..n} k*A110098(n,k).
G.f.: z*R^3/(1 - z*R^2)^2, where R = 1 + z*R + z*R^2 is the g.f. of the large Schroeder numbers (A006318).
Recurrence: n*a(n) = 3*(4*n-3)*a(n-1) - 19*(2*n-3)*a(n-2) + 3*(4*n-9) * a(n-3) - (n-3)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 1/8*(2+sqrt(2))*(3+2*sqrt(2))^n. - Vaclav Kotesovec, Oct 24 2012