cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110104 a(n) is the number of coverings of 1..n by cyclic words of length 3n, such that each value from 1 to n appears precisely twice. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,2,2,...,n,n}. No repeats of words are allowed in a given covering.

This page as a plain text file.
%I A110104 #10 Oct 24 2023 07:28:29
%S A110104 1,4,3760,23504320,567399078400,37518268781593600,
%T A110104 5543744611870143078400,1599334510537656091623424000,
%U A110104 818296434784062385011283591168000
%N A110104 a(n) is the number of coverings of 1..n by cyclic words of length 3n, such that each value from 1 to n appears precisely twice. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,2,2,...,n,n}. No repeats of words are allowed in a given covering.
%C A110104 P-recursive.
%F A110104 Differential equation satisfied by egf: sum a(n)t^3n/(3n!) {F(0) = 1, (-2+4*t^6+16*t^3)*(d/dt)F(t) + 4*t^4*(d^2/dt^2)F(t) + t^2*(4+12*t^3+t^6)*F(t)}.
%F A110104 Recurrence: {a(0) = 1, (40320 + 328752*n + 1816668*n^3 + 1102248*n^5 + 398034*n^6 + 1818369*n^4 + 1063116*n^2 + 78732*n^7 + 6561*n^8)*a(n) +(508608*n + 161280 + 453600*n^3 + 34992*n^5 + 2916*n^6 + 173340*n^4 + 661104*n^2)*a(n+1) + (12320 + 19980*n + 12096*n^2 + 3240*n^3 + 324*n^4)*a(n+2) - 2*a(n+3), a(1) = 4, a(2) = 3760}.
%F A110104 a(n) ~ 2^n * 3^(4*n + 1/2) * n^(4*n) / exp(4*n). - _Vaclav Kotesovec_, Oct 24 2023
%e A110104 a(1)=4: {123, 132} {112, 233} {113, 322} {133, 122}
%t A110104 RecurrenceTable[{(40320 + 328752*n + 1816668*n^3 + 1102248*n^5 + 398034*n^6 + 1818369*n^4 + 1063116*n^2 + 78732*n^7 + 6561*n^8) * a[n] + (508608*n + 161280 + 453600*n^3 + 34992*n^5 + 2916*n^6 + 173340*n^4 + 661104*n^2) * a[n + 1] + (12320 + 19980*n + 12096*n^2 + 3240*n^3 + 324*n^4) * a[n + 2] - 2*a[n + 3] == 0, a[0] == 1, a[1] == 4, a[2] == 3760}, a, {n, 0, 15}] (* _Vaclav Kotesovec_, Oct 24 2023 *)
%Y A110104 Cf. A052502, A110105, A110106, A108242.
%K A110104 easy,nonn
%O A110104 0,2
%A A110104 _Marni Mishna_, Jul 11 2005