cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110110 Number of symmetric Schroeder paths of length 2n (A Schroeder path of length 2n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis).

This page as a plain text file.
%I A110110 #49 Jul 26 2022 14:17:01
%S A110110 1,2,4,8,18,38,88,192,450,1002,2364,5336,12642,28814,68464,157184,
%T A110110 374274,864146,2060980,4780008,11414898,26572086,63521352,148321344,
%U A110110 354870594,830764794,1989102444,4666890936,11180805570,26283115038
%N A110110 Number of symmetric Schroeder paths of length 2n (A Schroeder path of length 2n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis).
%C A110110 a(n) = A026003(n-1)+A026003(n) (n>=1; indeed, every symmetric Schroeder path of length 2n is either a left factor L of length n-1 of a Schroeder path, followed by a H=(2,0) step and followed by the mirror image of L, or it is a left factor of length n of a Schroeder paths, followed by its mirror image).
%C A110110 a(n) is the number of sequences (f(n)) composed of n letters using letters a, b, c with the following rules. Each new sequence is built by adding a letter to the right end of a previous generation sequence. Letters a and b may not be adjacent. The number of c's <= n/2 in each sequence. Example: f(1) = {[a] [b]}, f(2) = {[aa], [ac], [bb], [bc]}, f(3) = {[aaa] [aac] [aca] [acb] [bbb] [bbc] [bcb] [bca]}. - _Roger Ford_, Jul 13 2014
%H A110110 G. C. Greubel, <a href="/A110110/b110110.txt">Table of n, a(n) for n = 0..1000</a>
%H A110110 Frédéric Bihan, Francisco Santos, Pierre-Jean Spaenlehauer, <a href="https://arxiv.org/abs/1804.5683">A Polyhedral Method for Sparse Systems with many Positive Solutions</a>, arXiv:1804.05683 [math.CO], 2018.
%H A110110 S. Samieinia, <a href="http://dx.doi.org/10.4171/PM/1858">The number of continuous curves in digital geometry</a>, Port. Math. 67 (1) (2010) 75-89.
%H A110110 Jacob A. Siehler, <a href="http://arxiv.org/abs/1409.3869">Selections Without Adjacency on a Rectangular Grid</a>, arXiv:1409.3869 [math.CO], 2014, p.9.
%F A110110 G.f.: (1 + x) * ( -1 + sqrt( 1 - 6*x^2 + x^4) / (1 - 2*x - x^2)) / (2*x). - _Michael Somos_, Feb 07 2011
%F A110110 G.f.: (1+z)R(z^2)/[1-zR(z^2)], where R=1+zR+zR^2=[1-z-sqrt(1-6z+z^2)]/(2z) is the g.f. of the large Schroeder numbers.
%F A110110 a(2*n) = A050146(n+1). - _Michael Somos_, Feb 07 2011
%F A110110 From _Roger Ford_, May 25 2014: (Start)
%F A110110 a(2*n) = 3*a(2*n-1) - 2*A026003(2*n-2), n>0.
%F A110110 a(2*n+1) = a(2*n) + 2*A026003(2*n) - A006318(n).
%F A110110 (End)
%F A110110 a(n) ~ sqrt(6*sqrt(2)-8) * (1+sqrt(2))^(n+2)/ (2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 09 2016
%F A110110 D-finite with recurrence (n+1)*a(n) +(n-3)*a(n-1) +2*(-3*n+2)*a(n-2) +2*(-3*n+8)*a(n-3) +(n-5)*a(n-4) +(n-5)*a(n-5)=0. - _R. J. Mathar_, Jul 26 2022
%e A110110 a(2)=4 because we have HH, UDUD, UHD and UUDD.
%e A110110 1 + 2*x + 4*x^2 + 8*x^3 + 18*x^4 + 38*x^5 + 88*x^6 + 192*x^7 + 450*x^8 + ...
%p A110110 RR:=(1-z^2-sqrt(1-6*z^2+z^4))/2/z^2: G:=(1+z)*RR/(1-z*RR): Gser:=series(G,z=0,36): 1,seq(coeff(Gser,z^n),n=1..33);
%t A110110 CoefficientList[Series[(1+x) * (-1 + Sqrt[1 - 6*x^2 + x^4] / (1 - 2*x - x^2)) / (2*x), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Mar 09 2016 *)
%o A110110 (PARI) {a(n) = if( n<0, 0, polcoeff( (1 + x) * ( -1 + sqrt( 1 - 6*x^2 + x^4 + x^2 * O(x^n)) / (1 - 2*x - x^2)) / (2*x), n))} /* _Michael Somos_, Feb 07 2011 */
%Y A110110 Cf. A026003, A006318.
%Y A110110 Partial sums of A247630.
%K A110110 nonn
%O A110110 0,2
%A A110110 _Emeric Deutsch_, Jul 12 2005