cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110123 Triangle read by rows: T(n,k) is the number of Delannoy paths of length n, having k EE's and NN's crossing the line y = x (i.e., two consecutive E steps from the line y = x+1 to the line y = x-1 or two consecutive N steps from the line y = x-1 to the line y = x+1).

Original entry on oeis.org

1, 3, 11, 2, 45, 16, 2, 197, 100, 22, 2, 903, 576, 174, 28, 2, 4279, 3206, 1202, 266, 34, 2, 20793, 17568, 7732, 2128, 376, 40, 2, 103049, 95592, 47676, 15452, 3408, 504, 46, 2, 518859, 518720, 286156, 105528, 27500, 5096, 650, 52, 2, 2646723, 2813514
Offset: 0

Views

Author

Emeric Deutsch, Jul 13 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
Row 0 has one term; row n has n terms (n > 0).
Row sums are the central Delannoy numbers (A001850).
Column 0 yields the little Schroeder numbers (A001003).

Examples

			T(2,1)=2 because we have NEEN and ENNE.
Triangle begins:
    1;
    3;
   11,   2;
   45,  16,   2;
  197, 100,  22,   2;
		

Crossrefs

Programs

  • Maple
    R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=simplify((1-z*R*t+z*R)/(1-z-z*R*t+z^2*R*t-z*R-z^2*R)): Gser:=simplify(series(G,z=0,14)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: 1; for n from 1 to 10 do seq(coeff(t*P[n],t^k),k=1..n) od; # yields sequence in triangular form

Formula

Sum_{k=0..n-1} k*T(n,k) = 2*A110127(n).
G.f.: (1 - tzR + zR)/(1 - z - tzR + tz^2*R - zR - z^2*R), where R = 1 + zR + zR^2 = (1 - z - sqrt(1 - 6z + z^2))/(2z) is the g.f. of the large Schroeder numbers (A006318).