cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110127 Number of EE's crossing the line y = x (i.e., two consecutive E steps from the line y = x+1 to the line y = x-1) in all Delannoy paths of length n.

Original entry on oeis.org

0, 0, 1, 10, 75, 508, 3277, 20566, 126871, 773688, 4679769, 28136546, 168395235, 1004239156, 5971820709, 35429993390, 209800355631, 1240361694064, 7323260678065, 43187703202234, 254439363998587, 1497730375793004
Offset: 0

Views

Author

Emeric Deutsch, Jul 13 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
{A110127}[n+2] = conv({0, {A002002})[n]. - Tilman Neumann, Feb 05 2009

Examples

			a(2) = 1 because, among the 13 (=A001850(2)) Delannoy paths of length 2, only NEEN has an EE crossing the line y = x.
		

Crossrefs

Programs

  • Maple
    R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z^2*R^2/(1-6*z+z^2): Gser:=series(G,z=0,27): 0,seq(coeff(Gser,z^n),n=1..24);
  • Mathematica
    CoefficientList[Series[x^2*((1-x-Sqrt[1-6*x+x^2])/2/x)^2/(1-6*x+x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} k*A110121(n,k).
G.f.: z^2*R^2/(1-6z+z^2), where R = 1+zR+zR^2 = [1-z-sqrt(1-6z+z^2)]/(2z) is the g.f. of the large Schroeder numbers (A006318).
Recurrence: n*(2*n-5)*a(n) = 6*(4*n^2 - 13*n + 8)*a(n-1) - 4*(19*n^2 - 76*n + 75)*a(n-2) + 6*(4*n^2 - 19*n + 20)*a(n-3) - (n-4)*(2*n-3)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 1/8*sqrt(2)*(3+2*sqrt(2))^n. - Vaclav Kotesovec, Oct 24 2012