A110135 Square array of expansions of 1/sqrt(1-4x-4*k*x^2), read by antidiagonals.
1, 2, 1, 6, 2, 1, 20, 8, 2, 1, 70, 32, 10, 2, 1, 252, 136, 44, 12, 2, 1, 924, 592, 214, 56, 14, 2, 1, 3432, 2624, 1052, 304, 68, 16, 2, 1, 12870, 11776, 5284, 1632, 406, 80, 18, 2, 1, 48620, 53344, 26840, 9024, 2332, 520, 92, 20, 2, 1, 184756, 243392, 137638, 50304
Offset: 0
Examples
As a square array, rows start 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, ... 6, 8, 10, 12, 14, 16, ... 20, 32, 44, 56, 68, 80, ... 70, 136, 214, 304, 406, 520, ... 252, 592, 1052, 1632, 2332, 3152, ... As a number triangle, rows start 1; 2, 1; 6, 2, 1; 20, 8, 2, 1; 70, 30, 10, 2, 1; 252, 136, 44, 12, 2, 1;
Formula
Square array T(n, k) = Sum_{j=0..floor(n/2)} C(n, j)*C(2(n-j), n)*k^j.
Number triangle T1(n, k) = Sum_{j=0..floor((n-k)/2)} C(n-k, j)*C(2(n-k-j), n-k)*k^j;
Comments