cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110153 Expansion of g.f.: Product_{n>=1} 1/(1 - 3^n*x^n)^(3/3^n).

This page as a plain text file.
%I A110153 #9 Jun 21 2024 14:34:14
%S A110153 1,3,12,39,138,426,1461,4458,14655,45309,145479,443037,1427196,
%T A110153 4329696,13655325,41795679,131102229,397649811,1247247507,3775785681,
%U A110153 11761535064,35770717695,110693177805,335003030301,1040296817955,3145674794979,9695067728493,29405519846121
%N A110153 Expansion of g.f.: Product_{n>=1} 1/(1 - 3^n*x^n)^(3/3^n).
%e A110153 A(x) = 1 + 3*x + 12*x^2 + 39*x^3 + 138*x^4 + 426*x^5 + ... =
%e A110153   1/[(1-3*x)*(1-9*x^2)^(1/3)*(1-27*x^3)^(1/9)*(1-81*x^4)^(1/27)*...].
%t A110153 nmax=27; CoefficientList[Series[Product[1/(1 - 3^n*x^n)^(3/3^n),{n,nmax}],{x,0,nmax}],x] (* _Stefano Spezia_, Jun 21 2024 *)
%o A110153 (PARI) a(n)=polcoeff(prod(k=1,n,1/(1-3^k*x^k+x*O(x^n))^(3/3^k)),n)
%Y A110153 Cf. A110152, A110154, A110155, A110156.
%K A110153 nonn
%O A110153 0,2
%A A110153 _Paul D. Hanna_, Jul 14 2005
%E A110153 a(25)-a(27) from _Stefano Spezia_, Jun 21 2024