cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110162 Riordan array ((1-x)/(1+x), x/(1+x)^2).

This page as a plain text file.
%I A110162 #44 Feb 20 2025 03:22:28
%S A110162 1,-2,1,2,-4,1,-2,9,-6,1,2,-16,20,-8,1,-2,25,-50,35,-10,1,2,-36,105,
%T A110162 -112,54,-12,1,-2,49,-196,294,-210,77,-14,1,2,-64,336,-672,660,-352,
%U A110162 104,-16,1,-2,81,-540,1386,-1782,1287,-546,135,-18,1,2,-100,825,-2640,4290,-4004,2275,-800,170,-20,1
%N A110162 Riordan array ((1-x)/(1+x), x/(1+x)^2).
%C A110162 Inverse of Riordan array A094527. Rows sums are A099837. Diagonal sums are A110164. Product of Riordan array A102587 and inverse binomial transform (1/(1+x), x/(1+x)).
%C A110162 Coefficients of polynomials related to Cartan matrices of types C_n and B_n: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2), with p(x,0) = 1; p(x,1) = 2-x; p(x,2) = x^2-4*x-2. - _Roger L. Bagula_, Apr 12 2008
%C A110162 From _Wolfdieter Lang_, Nov 16 2012: (Start)
%C A110162 The alternating row sums are given in A219233.
%C A110162 For n >= 1 the row polynomials in the variable x^2 are R(2*n,x):=2*T(2*n,x/2) with Chebyshev's T-polynomials. See A127672 and also the triangle A127677.
%C A110162 (End)
%C A110162 From _Peter Bala_, Jun 29 2015: (Start)
%C A110162 Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x)^2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
%C A110162 T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 - 2*x + sqrt(1 - 4*x))/2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
%H A110162 G. C. Greubel, <a href="/A110162/b110162.txt">Rows n=0..100 of triangle, flattened</a>
%H A110162 Paul Barry, <a href="https://arxiv.org/abs/2004.04577">On a Central Transform of Integer Sequences</a>, arXiv:2004.04577 [math.CO], 2020.
%H A110162 Alexander Burstein and Louis W. Shapiro, <a href="https://arxiv.org/abs/2502.13673">Pseudo-involutions in the Riordan group and Chebyshev polynomials</a>, arXiv:2502.13673 [math.CO], 2025.
%H A110162 P. Peart and W.-J. Woan, <a href="http://dx.doi.org/10.1016/S0166-218X(99)00166-3">A divisibility property for a subgroup of Riordan matrices</a>, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
%H A110162 T. M. Richardson, <a href="http://arxiv.org/abs/1405.6315">The Reciprocal Pascal Matrix</a>, arXiv:1405.6315 [math.CO], 2014.
%F A110162 T(n,k) = (-1)^(n-k)*(C(n+k,n-k) + C(n+k-1,n-k-1)), with T(0,0) = 1. - _Paul Barry_, Mar 22 2007
%F A110162 From _Wolfdieter Lang_, Nov 16 2012: (Start)
%F A110162 O.g.f. row polynomials P(n,x) := Sum(T(n,k)*x^k, k=0..n): (1-z^2)/(1+(x-2)*z+z^2) (from the Riordan property).
%F A110162 O.g.f. column No. k: ((1-x)/(1+x))*(x/(1+x)^2)^k, k >= 0.
%F A110162 T(0,0) = 1, T(n,k) = (-1)^(n-k)*(2*n/(n+k))*binomial(n+k,n-k), n>=1, and T(n,k) = 0 if n < k. (From the Chebyshev T-polynomial formula due to Waring's formula.)
%F A110162 (End)
%F A110162 T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Nov 29 2013
%e A110162 Triangle T(n,k) begins:
%e A110162 m\k  0    1    2     3     4     5     6    7    8   9 10 ...
%e A110162 0:   1
%e A110162 1:  -2    1
%e A110162 2:   2   -4    1
%e A110162 3:  -2    9   -6     1
%e A110162 4:   2  -16   20    -8     1
%e A110162 5:  -2   25  -50    35   -10     1
%e A110162 6:   2  -36  105  -112    54   -12     1
%e A110162 7:  -2   49 -196   294  -210    77   -14    1
%e A110162 8:   2  -64  336  -672   660  -352   104  -16    1
%e A110162 9:  -2   81 -540  1386 -1782  1287  -546  135  -18   1
%e A110162 10:  2 -100  825 -2640  4290 -4004  2275 -800  170 -20  1
%e A110162 ... Reformatted and extended by _Wolfdieter Lang_, Nov 16 2012
%e A110162 Row polynomial n=2: P(2,x) = 2 - 4*x + x^2. R(4,x):= 2*T(4,x/2) = 2 - 4*x^2 + x^4. For P and R see a comment above. - _Wolfdieter Lang_, Nov 16 2012.
%t A110162 Table[If[n==0 && k==0, 1, (-1)^(n-k)*(Binomial[n+k, n-k] + Binomial[n+k-1, n-k-1])], {n, 0, 15}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Dec 16 2018 *)
%o A110162 (Magma) /* As triangle */ [[(-1)^(n-k)*(Binomial(n+k,n-k) + Binomial(n+k-1,n-k-1)): k in [0..n]]: n in [0.. 12]]; // _Vincenzo Librandi_, Jun 30 2015
%o A110162 (PARI) {T(n,k) = (-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1))};
%o A110162 for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Dec 16 2018
%o A110162 (Sage) [[(-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1)) for k in range(n+1)] for n in range(12)] # _G. C. Greubel_, Dec 16 2018
%Y A110162 Cf. A128411. See A127677 for an almost identical triangle.
%Y A110162 Cf. A136674, A053122.
%K A110162 easy,sign,tabl
%O A110162 0,2
%A A110162 _Paul Barry_, Jul 14 2005