cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110167 Diagonal sums of Riordan array A110165.

Original entry on oeis.org

1, 3, 12, 51, 226, 1026, 4733, 22083, 103914, 492228, 2344035, 11211210, 53817063, 259135299, 1251074772, 6053946531, 29354128498, 142584834924, 693691007267, 3379680991356, 16486985580693, 80521218046569, 393674826425462
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[n-k,j]*Binomial[2j,j+k],{j,0,n-k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2012 *)

Formula

G.f.: 2/sqrt(1-6*x+5*x^2)/(1+3*x+sqrt(1-6*x+5*x^2)).
a(n) = sum{k=0..floor(n/2), sum{j=0..n-k, C(n-k, j)*C(2*j, j+k)}}.
Recurrence: 3*(n+1)*(16*n-7)*a(n) = (272*n^2 + 9*n - 119)*a(n-1) - 3*(48*n^2 - 37*n - 31)*a(n-2) - 5*(n-1)*(16*n+9)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 5^(n+3/2)/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 18 2012