This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110180 #9 Mar 06 2017 02:58:54 %S A110180 1,1,1,1,1,1,1,3,1,1,1,7,5,1,1,1,19,13,7,1,1,1,51,49,19,9,1,1,1,141, %T A110180 161,91,25,11,1,1,1,393,581,331,145,31,13,1,1,1,1107,2045,1441,561, %U A110180 211,37,15,1,1,1,3139,7393,5797,2841,851,289,43,17,1,1 %N A110180 Triangle of generalized central trinomial coefficients. %C A110180 Rows sums are A110181. Diagonal sums are A110182. Columns include central trinomial coefficients A002426, A084601, A084603, A084605, A098264. T(n,k) = central coefficient (1 + x + kx^2)^n. %H A110180 G. C. Greubel, <a href="/A110180/b110180.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A110180 Number triangle T(n, k) = Sum_{j=0..floor((n-k)/2)} C(n-k, j)*C(n-k-j, j)*k^j. %e A110180 Rows begin %e A110180 1; %e A110180 1, 1; %e A110180 1, 1, 1; %e A110180 1, 3, 1, 1; %e A110180 1, 7, 5, 1, 1; %e A110180 1, 19, 13, 7, 1, 1; %t A110180 T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n - k - j, j]*k^j, {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Mar 05 2017 *) %K A110180 easy,nonn,tabl %O A110180 0,8 %A A110180 _Paul Barry_, Jul 14 2005