cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A110183 Triangle read by rows: T(n,k) (0<=k<=n) is the number of Delannoy paths of length n, having k (1,1)-steps on the lines y=x, y=x+1 and y=x-1.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 22, 28, 12, 1, 90, 130, 80, 20, 1, 394, 616, 462, 180, 30, 1, 1806, 2982, 2538, 1270, 350, 42, 1, 8558, 14708, 13676, 8056, 2968, 616, 56, 1, 41586, 73698, 73176, 48392, 21608, 6188, 1008, 72, 1, 206098, 374224, 390926, 281948, 144512
Offset: 0

Views

Author

Emeric Deutsch, Jul 14 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps (E=1,0), N=(0,1) and D(1,1).
Row sums are the central Delannoy numbers (A001850). First column yields the large Schroeder numbers (A006318). sum(k*T(n,k),k=0..n)=A110184(n)

Examples

			T(2,1)=6 because we have DNE, DEN, NED, END, NDE and EDN.
Triangle begins
1;
2,1;
6,6,1;
22,28,12,1;
90,130,80,20,1;
		

Crossrefs

Programs

  • Maple
    r:=(1-z-sqrt(1-6*z+z^2))/2/z: R:=1/(1-t*z-z*r): G:=1/(1-t*z-2*z*R): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form

Formula

G.f.: (1-2tz+z+Q)/[1-3z-3tz-tz^2+2t^2*z^2+(1-tz)Q], where Q=sqrt(1-6z+z^2).
Showing 1-1 of 1 results.