cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110193 Number of (indecomposable or decomposable) binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 6.

This page as a plain text file.
%I A110193 #7 Oct 04 2012 10:28:57
%S A110193 0,0,0,0,0,0,0,0,0,0,1,1,1,3,13,74,938
%N A110193 Number of (indecomposable or decomposable) binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 6.
%C A110193 In fact all such codes of length <= 42 are indecomposable.
%D A110193 R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.
%D A110193 R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
%D A110193 J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
%D A110193 V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
%H A110193 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A110193 J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (<a href="http://neilsloane.com/doc/pless.txt">Abstract</a>, <a href="http://neilsloane.com/doc/pless.pdf">pdf</a>, <a href="http://neilsloane.com/doc/pless.ps">ps</a>, <a href="http://neilsloane.com/doc/plesstaba.ps">Table A</a>, <a href="http://neilsloane.com/doc/plesstabd.ps">Table D</a>).
%H A110193 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%Y A110193 Cf. A003179, A106167.
%K A110193 nonn
%O A110193 1,14
%A A110193 _N. J. A. Sloane_, Sep 06 2005