cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110200 Triangle, read by rows, where T(n,k) equals the sum of squares of numbers < 2^n having exactly k ones in their binary expansion.

This page as a plain text file.
%I A110200 #18 Jul 22 2024 15:18:19
%S A110200 1,5,9,21,70,49,85,395,535,225,341,1984,3906,3224,961,1365,9429,24066,
%T A110200 29274,17241,3969,5461,43434,135255,215900,188595,86106,16129,21845,
%U A110200 196095,717825,1412275,1628175,1106445,411995,65025,87381,872788
%N A110200 Triangle, read by rows, where T(n,k) equals the sum of squares of numbers < 2^n having exactly k ones in their binary expansion.
%C A110200 Compare to triangle A110205 (sum of cubes).
%H A110200 Paul D. Hanna, <a href="/A110200/b110200.txt">Rows n = 1..45, flattened.</a>
%F A110200 T(n,k) = (4^n-1)/3 * C(n-2, k-1) + (2^n-1)^2 * C(n-2, k-2).
%F A110200 G.f.: A(x,y) = x*y*(1-2*x*(1-y)) / ((1-x*(1+y))*(1-2*x*(1+y))*(1-4*x*(1+y))).
%F A110200 G.f. for row n: ((4^n-1)/3 + (2^n-1)^2*x)*(1+x)^(n-2).
%e A110200 Row 4 is formed by sums of squares of numbers < 2^4:
%e A110200 T(4,1) = 1^2 + 2^2 + 4^2 + 8^2 = 85;
%e A110200 T(4,2) = 3^2 + 5^2 + 6^2 + 9^2 + 10^2 + 12^2 = 395;
%e A110200 T(4,3) = 7^2 + 11^2 + 13^2 + 14^2 = 535;
%e A110200 T(4,4) = 15^2 = 225.
%e A110200 Triangle begins:
%e A110200 1;
%e A110200 5, 9;
%e A110200 21, 70, 49;
%e A110200 85, 395, 535, 225;
%e A110200 341, 1984, 3906, 3224, 961;
%e A110200 1365, 9429, 24066, 29274, 17241, 3969;
%e A110200 5461, 43434, 135255, 215900, 188595, 86106, 16129;
%e A110200 21845, 196095, 717825, 1412275, 1628175, 1106445, 411995, 65025;
%e A110200 87381, 872788, 3662848, 8541876, 12197570, 10974236, 6095208, 1915228, 261121; ...
%e A110200 Row g.f.s are:
%e A110200 row 1: (1 + 1*x)/(1+x);
%e A110200 row 2: (5 + 9*x);
%e A110200 row 3: (21 + 49*x)*(1+x);
%e A110200 row 4: (85 + 225*x)*(1+x)^2.
%e A110200 G.f. for row n is:
%e A110200 ((4^n-1)/3 + (2^n-1)^2*x)*(1+x)^(n-2).
%o A110200 (PARI) T(n,k)=(4^n-1)/3*binomial(n-2,k-1)+(2^n-1)^2*binomial(n-2,k-2)
%o A110200 for(n=1, 15, for(k=1, n, print1(T(n, k), ", ")); print(""))
%o A110200 (PARI) /* Using G.f. of A(x,y): */
%o A110200 T(n,k)=my(X=x+x*O(x^n),Y=y+y*O(y^k));if(n<k||k<1,0, polcoef(polcoef(x*y*(1-2*x*(1-y))/((1-X*(1+Y))*(1-2*X*(1+Y))*(1-4*X*(1+Y))),n,x),k,y))
%o A110200 for(n=1, 15, for(k=1, n, print1(T(n, k), ", ")); print(""))
%o A110200 (PARI) /* Sum of Squares of numbers<2^n with k 1-bits: */
%o A110200 T(n,k)=my(B=vector(n+1));if(n<k||k<1,0, for(m=1,2^n-1,B[1+sum(i=1,#binary(m),(binary(m))[i])]+=m^2);B[k+1])
%o A110200 for(n=1, 15, for(k=1, n, print1(T(n, k), ", ")); print(""))
%Y A110200 Cf. A110201 (central terms), A002450 (column 1), A110202 (column 2), A110203 (column 3), A110204 (column 4), A016290 (row sums), A110205.
%K A110200 nonn,tabl
%O A110200 1,2
%A A110200 _Paul D. Hanna_, Jul 16 2005