cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110206 Row sums of triangle A110205, where A110205(n,k) equals the sum of cubes of numbers < 2^n having exactly k ones in their binary expansion.

This page as a plain text file.
%I A110206 #10 Oct 03 2024 08:31:50
%S A110206 1,36,784,14400,246016,4064256,66064384,1065369600,17112825856,
%T A110206 274341298176,4393752592384,70334388633600,1125625045712896,
%U A110206 18012199553335296,288212784234102784,4611545282012774400
%N A110206 Row sums of triangle A110205, where A110205(n,k) equals the sum of cubes of numbers < 2^n having exactly k ones in their binary expansion.
%H A110206 G. C. Greubel, <a href="/A110206/b110206.txt">Table of n, a(n) for n = 1..820</a>
%H A110206 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (28,-224,512).
%F A110206 G.f.: x*(1+8*x)/( (1-4*x)*(1-8*x)*(1-16*x) ).
%F A110206 From _G. C. Greubel_, Oct 02 2024: (Start)
%F A110206 a(n) = ( binomial(2^n, 2) )^2 = 4^(n-1)*(2^n - 1)^2.
%F A110206 E.g.f.: (1/4)*(exp(4*x) - 2*exp(8*x) + exp(16*x)). (End)
%t A110206 Binomial[2^Range[30], 2]^2 (* _G. C. Greubel_, Oct 02 2024 *)
%o A110206 (PARI) a(n)=polcoeff(x*(1+8*x)/((1-4*x)*(1-8*x)*(1-16*x)+x*O(x^n)),n)
%o A110206 (Magma) [Binomial(2^n,2)^2: n in [1..30]]; // _G. C. Greubel_, Oct 02 2024
%o A110206 (SageMath)
%o A110206 def A110206(n): return binomial(2^n, 2)^2
%o A110206 [A110206(n) for n in range(1,31)] # _G. C. Greubel_, Oct 02 2024
%Y A110206 Cf. A110205 (triangle), A110207 (central terms).
%K A110206 nonn
%O A110206 1,2
%A A110206 _Paul D. Hanna_, Jul 16 2005