A110221 Triangle read by rows: T(n,k) (0<=k<=floor(n/2)) is the number of Delannoy paths of length n, having k ED's.
1, 3, 11, 2, 45, 18, 195, 120, 6, 873, 720, 90, 3989, 4110, 870, 20, 18483, 22806, 6930, 420, 86515, 124264, 49560, 5320, 70, 408105, 668520, 331128, 52920, 1890, 1936881, 3562830, 2111760, 456120, 29610, 252, 9238023, 18850590, 13020480, 3575880
Offset: 0
Examples
T(2,1)=2 because we have NED and EDN. Triangle begins: 1; 3; 11,2; 45,18; 195,120,6;
Links
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
Programs
-
Maple
R:=(1-z-sqrt(1-6*z+5*z^2-4*z^2*t))/2/z/(1-z+t*z): G:=1/(1-z-2*t*z^2*R-2*z*R+2*z^2*R): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 12 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od; # yields sequence in triangular form
Formula
G.f.: 1/(1-z-2tz^2*R-2zR+2z^2*R), where R=[1-z-sqrt(1-6z+5z^2-4tz^2)]/[2z(1-z+tz)].
Comments