This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110224 #22 Sep 08 2022 08:45:19 %S A110224 1,2,9,35,152,637,2709,11458,48565,205679,871344,3690953,15635321, %T A110224 66231970,280563633,1188485803,5034507976,21326515877,90340574445, %U A110224 382688808866,1621095817661,6867072066967,29089384105824 %N A110224 a(n) = Fibonacci(n)^3 + Fibonacci(n+1)^3. %H A110224 Vincenzo Librandi, <a href="/A110224/b110224.txt">Table of n, a(n) for n = 0..172</a> %H A110224 Diego Marques and Alain Togbé, <a href="http://dx.doi.org/10.3792/pjaa.86.174">On the sum of powers of two consecutive Fibonacci numbers</a>, Proc. Japan Acad. Ser. A Math. Sci., Volume 86, Number 10 (2010), 174-176. %H A110224 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-3,-1). %F A110224 G.f.: (1 - x - 3*x^2 - x^3)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) = (1 - x - 3*x^2 - x^3)/((1 + x - x^2)*(1 - 4x - x^2)). %F A110224 a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4). %F A110224 a(n) = (3*(-1)^n*Fibonacci(n-1) + 2*Fibonacci(3*n+2))/5. %t A110224 Total/@Partition[Fibonacci[Range[0,30]]^3,2,1] (* or *) LinearRecurrence [{3,6,-3,-1},{1,2,9,35},30] (* _Harvey P. Dale_, May 29 2013 *) %o A110224 (Magma) [Fibonacci(n)^3 + Fibonacci(n+1)^3: n in [0..30]]; // _Vincenzo Librandi_, Jun 05 2011 %o A110224 (PARI) a(n)=fibonacci(n)^3+fibonacci(n+1)^3 \\ _Charles R Greathouse IV_, Jun 05 2011 %o A110224 (Sage) [sum(fibonacci(n+k)^3 for k in (0..1)) for n in (0..30)] # _G. C. Greubel_, Mar 18 2019 %Y A110224 Cf. A056570. %K A110224 easy,nonn %O A110224 0,2 %A A110224 _Paul Barry_, Jul 16 2005