cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110239 Number of (1,1) steps in all peakless Motzkin paths of length n.

This page as a plain text file.
%I A110239 #12 Jul 24 2022 11:12:35
%S A110239 1,3,8,22,58,151,392,1013,2612,6728,17318,44564,114671,295099,759576,
%T A110239 1955657,5036741,12976355,33443190,86221745,222371926,573713958,
%U A110239 1480677048,3822708372,9872424913,25504336609,65907869404,170368399138
%N A110239 Number of (1,1) steps in all peakless Motzkin paths of length n.
%C A110239 Sequence name can be easily translated into RNA secondary structure terminology.
%C A110239 Row sums of A110238.
%H A110239 W. R. Schmitt and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0166-218X(92)00038-N">Linear trees and RNA secondary structure</a>, Discrete Appl. Math., 51, 317-323, 1994.
%H A110239 P. R. Stein and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1978), 261-272.
%H A110239 M. Vauchassade de Chaumont and G. Viennot, <a href="https://www.emis.de/journals/SLC/opapers/s08viennot.html">Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire</a>, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
%F A110239 G.f.: z^2g^2*(g-1)/(1-z^2*g^2), where g=1+zg+z^2*g(g-1)=[1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4)]/(2z^2) is the g.f. of the RNA secondary structure numbers (A004148).
%F A110239 D-finite with recurrence -(n+2)*(26*n-99)*a(n) +(126*n^2-385*n-386)*a(n-1) +(-122*n^2+531*n-386)*a(n-2) +(-22*n^2+167*n-122)*a(n-3) +(-174*n^2+851*n-882)*a(n-4) +(74*n-117)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jul 24 2022
%e A110239 a(5)=8 because in the 8 (=A004148(5)) peakless Motzkin paths of length 5, namely HHHHH, UHDHH, UHHDH, UHHHD, HUHDH, HUHHD, HHUHD and UUHDD (where U=(1,1), H=(1,0) and D=(1,-1)), we have altogether 8 U steps.
%p A110239 g:=(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))/2/z^2: G:=z^2*g^2*(g-1)/(1-z^2*g^2): Gser:=series(G,z=0,37): seq(coeff(Gser,z^n),n=3..34);
%Y A110239 Cf. A004148, A110238.
%K A110239 nonn
%O A110239 3,2
%A A110239 _Emeric Deutsch_, Jul 17 2005