This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110255 #14 Nov 12 2012 23:39:17 %S A110255 1,3,5,28,81,704,325,768,20825,311296,83349,1507328,1334025,3145728, %T A110255 5337189,130023424,1366504425,7516192768,5466528925,12884901888, %U A110255 87470372561,2954937499648,349899121845,12919261626368,22394407746529 %N A110255 Numerators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x. %C A110255 Limit a(2*n-1)/A110256(2*n-1) = limit A110257(n)/A110258(n) = 4/Pi. %C A110255 Limit a(2*n)/A110256(2*n) = limit A110259(n)/A110260(n) = Pi. %H A110255 Paul D. Hanna, <a href="/A110255/b110255.txt">Table of n, a(n) for n = 1..400</a> %e A110255 arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-... %e A110255 = [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x, %e A110255 768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x, %e A110255 1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...] %e A110255 = 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))). %e A110255 The coefficients of x in the even-indexed partial quotients converge to Pi: %e A110255 {3, 28/9, 704/225, 768/245, 311296/99225, ...}. %e A110255 The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: %e A110255 {1, 5/4, 81/64, 325/256, 20825/16384, ...}. %o A110255 (PARI) {a(n)=numerator(subst((contfrac( sum(k=0,n,(-1)^k/x^(2*k+1)/(2*k+1)),n+1))[n+1],x,1))} %Y A110255 Cf. A110256 (denominators), A110257/A110258 (odd-indexed), A110259/A110260 (even-indexed). %K A110255 cofr,frac,nonn %O A110255 1,2 %A A110255 _Paul D. Hanna_, Jul 18 2005