cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110256 Denominators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x.

This page as a plain text file.
%I A110256 #14 Nov 12 2012 23:39:38
%S A110256 1,1,4,9,64,225,256,245,16384,99225,65536,480249,1048576,1002001,
%T A110256 4194304,41409225,1073741824,2393453205,4294967296,4102737925,
%U A110256 68719476736,940839860961,274877906944,4113258565689,17592186044416
%N A110256 Denominators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x.
%C A110256 Limit A110255(2*n-1)/a(2*n-1) = limit A110257(n)/A110258(n) = 4/Pi.
%C A110256 Limit A110255(2*n)/a(2*n) = limit A110259(n)/A110260(n) = Pi.
%H A110256 Paul D. Hanna, <a href="/A110256/b110256.txt">Table of n, a(n) for n = 1..400</a>
%e A110256 arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
%e A110256 = [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
%e A110256 768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
%e A110256 1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
%e A110256 = 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
%e A110256 The coefficients of x in the even-indexed partial quotients converge to Pi:
%e A110256 {3, 28/9, 704/225, 768/245, 311296/99225, ...}.
%e A110256 The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
%e A110256 {1, 5/4, 81/64, 325/256, 20825/16384, ...}.
%o A110256 (PARI) {a(n)=denominator(subst((contfrac( sum(k=0,n,(-1)^k/x^(2*k+1)/(2*k+1)),n+1))[n+1],x,1))}
%Y A110256 Cf. A110255 (numerators), A110257/A110258 (odd-indexed), A110259/A110260 (even-indexed).
%Y A110256 Cf. A095175. [From _R. J. Mathar_, Aug 18 2008]
%K A110256 cofr,frac,nonn
%O A110256 1,3
%A A110256 _Paul D. Hanna_, Jul 18 2005