cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110272 a(n) = Pell(n)^3.

This page as a plain text file.
%I A110272 #32 Jan 05 2025 19:51:38
%S A110272 0,1,8,125,1728,24389,343000,4826809,67917312,955671625,13447314152,
%T A110272 189218084021,2662500456000,37464224551181,527161643971768,
%U A110272 7417727240640625,104375343011770368,1468672529408250769
%N A110272 a(n) = Pell(n)^3.
%C A110272 a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/3,2/3)-fences, black third-squares (1/3 X 1 pieces, always placed so that the shorter sides are horizontal), and white third-squares. A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/6,5/6)-fences, black (1/6,1/3)-fences, and white (1/6,1/3)-fences. - _Michael A. Allen_, Dec 29 2022
%H A110272 G. C. Greubel, <a href="/A110272/b110272.txt">Table of n, a(n) for n = 0..850</a>
%H A110272 Michael A. Allen and Kenneth Edwards, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/60-5/allen.pdf">Fence tiling derived identities involving the metallonacci numbers squared or cubed</a>, Fib. Q. 60:5 (2022) 5-17.
%H A110272 Toufik Mansour, <a href="https://ajc.maths.uq.edu.au/pdf/30/ajc_v30_p207.pdf">A formula for the generating functions of powers of Horadam's sequence</a>, Australas. J. Combin. 30 (2004) 207-212.
%H A110272 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (12,30,-12,-1).
%F A110272 G.f.:  x*(1-4*x-x^2) / ((1+2*x-x^2)*(1-14*x-x^2)).
%F A110272 a(n) = 12*a(n-1) + 30*a(n-2) - 12*a(n-3) - a(n-4).
%F A110272 a(n) = (Pell(3*n) - 3*(-1)^n*Pell(n))/8.
%t A110272 Fibonacci[Range[0, 30], 2]^3 (* _G. C. Greubel_, Sep 17 2021 *)
%o A110272 (Magma) I:=[0,1,8,125]; [n le 4 select I[n] else 12*Self(n-1) + 30*Self(n-2) -12*Self(n-3) - Self(n-4): n in [1..31]]; // _G. C. Greubel_, Sep 17 2021
%o A110272 (Sage) [lucas_number1(n, 2, -1)^3 for n in (0..30)] # _G. C. Greubel_, Sep 17 2021
%Y A110272 Cf. A000129, A079291, A213688.
%K A110272 nonn,easy
%O A110272 0,3
%A A110272 _Paul Barry_, Jul 18 2005