This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110276 #24 Jun 07 2025 04:11:11 %S A110276 1,4,16,66,280,1218,5422,24666,114540,542278,2614178,12814102, %T A110276 63772982,321754290,1643263134,8483485886,44214343344,232362906298, %U A110276 1230090777342,6553657204178,35113127086114,189062666857686,1022459506515674 %N A110276 Convolution of large Schroeder numbers and central binomial coefficients. %H A110276 G. C. Greubel, <a href="/A110276/b110276.txt">Table of n, a(n) for n = 0..1000</a> %F A110276 G.f.: (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)). - corrected by _Georg Fischer_, Apr 09 2020 %F A110276 a(n) = Sum_{k=0..n} C(2*k, k)*( Sum_{j=0..n-k} C(n-k+j, n-k)*C(n-k, j)/(j+1) ). %F A110276 a(n) = Sum_{k=0..n} A000984(k)*A006318(n-k). %F A110276 a(n) ~ sqrt(4 + sqrt(2)) * (1 + sqrt(2))^(2*n + 2) / (2*sqrt(7*Pi)*n^(3/2)). - _Vaclav Kotesovec_, Sep 14 2021 %t A110276 CoefficientList[Series[(1-x-(Sqrt[1-6*x+x^2]))/(2x*Sqrt[1-4*x]), {x,0,30}], x] (* _Georg Fischer_, Apr 09 2020 *) %o A110276 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x-Sqrt(1-6*x+x^2))/(2*x*Sqrt(1-4*x)) )); // _G. C. Greubel_, Sep 24 2021 %o A110276 (Sage) %o A110276 def A110276_list(prec): %o A110276 P.<x> = PowerSeriesRing(ZZ, prec) %o A110276 return P( (1-x-sqrt(1-6*x+x^2))/(2*x*sqrt(1-4*x)) ).list() %o A110276 A110276_list(30) %o A110276 (PARI) a(n) = sum(k=0, n, binomial(2*k, k)*sum(j=0, n-k, binomial(n-k+j, n-k)*binomial(n-k, j)/(j+1))); \\ _Michel Marcus_, Sep 25 2021 %Y A110276 Cf. A000984, A006318. %K A110276 easy,nonn %O A110276 0,2 %A A110276 _Paul Barry_, Jul 18 2005