cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110286 a(n) = 15*2^n.

This page as a plain text file.
%I A110286 #46 Sep 08 2022 08:45:20
%S A110286 15,30,60,120,240,480,960,1920,3840,7680,15360,30720,61440,122880,
%T A110286 245760,491520,983040,1966080,3932160,7864320,15728640,31457280,
%U A110286 62914560,125829120,251658240,503316480,1006632960,2013265920,4026531840,8053063680,16106127360
%N A110286 a(n) = 15*2^n.
%C A110286 The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).
%H A110286 Vincenzo Librandi, <a href="/A110286/b110286.txt">Table of n, a(n) for n = 0..235</a>
%H A110286 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A110286 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).
%F A110286 G.f.: 15/(1-2x). - _Philippe Deléham_, Nov 23 2008
%F A110286 a(n) = A000079(n)*15 = A007283(n)*5 = A020714(n)*3. - _Omar E. Pol_, Dec 17 2008
%F A110286 a(n) = A173787(n+4,n). - _Reinhard Zumkeller_, Feb 28 2010
%F A110286 Subsequence of A051916. - _Reinhard Zumkeller_, Mar 20 2010
%F A110286 a(n) = 2*a(n-1) (with a(0)=15). - _Vincenzo Librandi_, Dec 26 2010
%F A110286 E.g.f.: 15*exp(2*x). - _Stefano Spezia_, May 15 2021
%t A110286 15*2^Range[0, 60] (* _Vladimir Joseph Stephan Orlovsky_, Jun 09 2011 *)
%t A110286 NestList[2#&,15,30] (* _Harvey P. Dale_, Oct 19 2014 *)
%o A110286 (Magma) [15*2^n: n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011
%o A110286 (PARI) a(n)=15<<n \\ _Charles R Greathouse IV_, Oct 07 2015
%Y A110286 Cf. A007283, A020714, A005009, A005010, A005015, A005029.
%Y A110286 Cf. A000079, A051916, A173787.
%K A110286 easy,nonn
%O A110286 0,1
%A A110286 _Alexandre Wajnberg_, Sep 07 2005
%E A110286 Edited by _Omar E. Pol_, Dec 16 2008