cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110288 a(n) = 19*2^n.

This page as a plain text file.
%I A110288 #38 Jan 05 2023 03:12:03
%S A110288 19,38,76,152,304,608,1216,2432,4864,9728,19456,38912,77824,155648,
%T A110288 311296,622592,1245184,2490368,4980736,9961472,19922944,39845888,
%U A110288 79691776,159383552,318767104,637534208,1275068416,2550136832,5100273664,10200547328,20401094656
%N A110288 a(n) = 19*2^n.
%C A110288 The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).
%C A110288 19 times powers of 2. - _Omar E. Pol_, Dec 17 2008
%H A110288 Vincenzo Librandi, <a href="/A110288/b110288.txt">Table of n, a(n) for n = 0..235</a>
%H A110288 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A110288 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).
%F A110288 G.f.: 19/(1-2*x). - _Philippe Deléham_, Nov 23 2008
%F A110288 a(n) = A000079(n)*19. - _Omar E. Pol_, Dec 17 2008
%F A110288 E.g.f.: 19*exp(2*x). - _G. C. Greubel_, Jan 04 2023
%t A110288 19*2^Range[0, 60] (* _Vladimir Joseph Stephan Orlovsky_, Jun 09 2011 *)
%t A110288 NestList[2#&,19,30] (* _Harvey P. Dale_, May 11 2018 *)
%o A110288 (Magma) [19*2^n: n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011
%o A110288 (SageMath) [19*2^n for n in range(41)] # _G. C. Greubel_, Jan 04 2023
%Y A110288 Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), this sequence (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).
%K A110288 easy,nonn
%O A110288 0,1
%A A110288 _Alexandre Wajnberg_, Sep 07 2005
%E A110288 Edited by _Omar E. Pol_, Dec 16 2008