This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110292 #10 Jan 06 2023 09:06:15 %S A110292 1,-1,1,2,-3,1,-8,12,-5,1,40,-60,26,-7,1,-224,336,-148,44,-9,1,1344, %T A110292 -2016,896,-280,66,-11,1,-8448,12672,-5664,1824,-464,92,-13,1,54912, %U A110292 -82368,36960,-12144,3240,-708,122,-15,1,-366080,549120,-247104,82368,-22704,5280,-1020,156,-17,1 %N A110292 Riordan array (1-u, u) where u=(-1 + sqrt(1+8*x))/4. %C A110292 Inverse of Riordan array (1/(1-x), x*(1+2*x)), A110291. %H A110292 G. C. Greubel, <a href="/A110292/b110292.txt">Rows n = 0..50 of the triangle, flattened</a> %F A110292 T(n, 0) = (-1)^n * 2^(n-1) * Catalan(n-1) + (3/2)*[n=0]. %F A110292 From _G. C. Greubel_, Jan 04 2023: (Start) %F A110292 T(n, n) = 1. %F A110292 T(n, n-1) = 1-2*n. %F A110292 T(n, n-2) = 2*A028872(n). %F A110292 T(n, 1) = (-1)^(n-1) * A181282(n-1), n >= 1. %F A110292 Sum_{k=0..n} T(n, k) = A000007(n). (End) %e A110292 Triangle begins as: %e A110292 1; %e A110292 -1, 1; %e A110292 2, -3, 1; %e A110292 -8, 12, -5, 1; %e A110292 40, -60, 26, -7, 1; %e A110292 -224, 336, -148, 44, -9, 1; %e A110292 1344, -2016, 896, -280, 66, -11, 1; %e A110292 -8448, 12672, -5664, 1824, -464, 92, -13, 1; %e A110292 54912, -82368, 36960, -12144, 3240, -708, 122, -15, 1; %t A110292 F[k_]:= CoefficientList[Series[(5-Sqrt[1+8*x])*(-1+Sqrt[1+8*x])^k/4^(k +1), {x,0,20}], x]; %t A110292 A110292[n_, k_]:= F[k][[n+1]]; %t A110292 Table[A110292[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 04 2023 *) %o A110292 (Magma) %o A110292 R<x>:=PowerSeriesRing(Rationals(), 30); %o A110292 F:= func< k | Coefficients(R!( (5-Sqrt(1+8*x))*(-1+Sqrt(1+8*x) )^k/4^(k+1) )) >; %o A110292 A110292:= func< n,k | F(k)[n-k+1] >; %o A110292 [A110292(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Jan 04 2023 %o A110292 (SageMath) %o A110292 def p(k,x): return (5-sqrt(1+8*x))*(-1+sqrt(1+8*x))^k/4^(k+1) %o A110292 def A110292(n,k): return ( p(k,x) ).series(x, 30).list()[n] %o A110292 flatten([[A110292(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jan 04 2023 %Y A110292 Cf. A000007, A028872, A110291, A181282. %K A110292 easy,sign,tabl %O A110292 0,4 %A A110292 _Paul Barry_, Jul 18 2005