This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110306 #10 Apr 15 2019 06:03:25 %S A110306 1,1,2,6,21,128,3079 %N A110306 Number of inequivalent (indecomposable or decomposable) self-dual codes of Type {4^H+}_II and length 2n. %H A110306 L. E. Danielsen and M. G. Parker, <a href="https://arxiv.org/abs/math/0504522">On the classification of all self-dual additive codes over GF(4) of length up to 12</a>, arXiv:math/0504522 [math.CO], 2005-2006. %H A110306 L. E. Danielsen and M. G. Parker, <a href="https://doi.org/10.1016/j.jcta.2005.12.004">On the classification of all self-dual additive codes over GF(4) of length up to 12</a>, J. Combin. Theory A 113 (7) (2006) 1351-1367. %H A110306 W. C. Huffman, <a href="https://doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic., 11 (2005), 451-490. %H A110306 W. C. Huffman, <a href="http://dx.doi.org/10.3934/amc.2007.1.357">Additive self-dual codes over F_4 with an automorphism of odd prime order</a>, Adv. Math. Commun., 1 (2007), 357-398. %H A110306 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %Y A110306 Cf. A090899, A094927, A110302. %K A110306 nonn,more %O A110306 0,3 %A A110306 _N. J. A. Sloane_, Sep 09 2005