This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110317 #9 Jul 23 2017 02:44:34 %S A110317 1,1,1,2,4,7,1,12,5,21,15,1,37,37,8,65,84,35,1,114,182,115,12,200,381, %T A110317 323,73,1,351,777,825,313,17,616,1554,1977,1087,138,1,1081,3062,4524, %U A110317 3291,754,23,1897,5962,9999,9063,3209,241,1,3329,11496,21515,23300 %N A110317 Triangle read by rows: T(n,k) (k>=0) is the number of RNA secondary structures of size n (i.e., with n nodes) having k arcs that are covered by other arcs. %C A110317 Rows 0,1,2 have one term each; row n >= 3 has ceiling(n/2) - 1 terms. %C A110317 Rows sums yield A004148. %C A110317 T(n,0) = A005251(n+1). %C A110317 Sum_{k>=0} k*T(n,k) = A110318(n-5). %H A110317 W. R. Schmitt and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0166-218X(92)00038-N">Linear trees and RNA secondary structure</a>, Discrete Appl. Math., 51, 317-323, 1994. %H A110317 P. R. Stein and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1978), 261-272. %H A110317 M. Vauchassade de Chaumont and G. Viennot, <a href="http://www.emis.de/journals/SLC/opapers/s08viennot.html">Polynômes orthogonaux et problèmes d'énumeration en biologie moléculaire</a>, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86. %F A110317 G.f.: 2t/(2t - 2tz - 1 + z + tz^2 + sqrt(1 - 2z - 2tz^2 + z^2 - 2tz^3 + t^2*z^4)). %e A110317 T(6,1)=5 because we have 15/(24)/3/6, 16/(24)/3/5, 16/(25)/3/4, 16/2/(35)/4 and 1/26/(35)/4 (the covered arcs are shown between parentheses). %e A110317 Triangle begins %e A110317 1; %e A110317 1; %e A110317 1; %e A110317 2; %e A110317 4; %e A110317 7, 1; %e A110317 12, 5; %e A110317 21, 15, 1; %e A110317 37, 37, 8; %p A110317 G:=2*t/(2*t-2*z*t-1+z+t*z^2+sqrt(1-2*z-2*t*z^2+z^2-2*t*z^3+t^2*z^4)): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 17 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 2 do print(1) od: for n from 3 to 17 do seq(coeff(t*P[n],t^k),k=1..ceil(n/2)-1) od; # yields sequence in triangular form %Y A110317 Cf. A004148, A005252, A110318. %K A110317 nonn,tabf %O A110317 0,4 %A A110317 _Emeric Deutsch_, Jul 19 2005