cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110318 Number of arcs covered by other arcs in all RNA secondary structures of size n+5 (i.e., with n+5 nodes).

This page as a plain text file.
%I A110318 #16 Jun 13 2017 06:51:21
%S A110318 1,5,17,53,157,448,1250,3434,9326,25114,67196,178895,474398,1254072,
%T A110318 3306738,8701193,22857026,59958380,157098360,411214120,1075491286,
%U A110318 2810892598,7342205478,19168694232,50023584613,130497101659,340325126923,887307420361
%N A110318 Number of arcs covered by other arcs in all RNA secondary structures of size n+5 (i.e., with n+5 nodes).
%H A110318 Vincenzo Librandi, <a href="/A110318/b110318.txt">Table of n, a(n) for n = 0..1000</a>
%H A110318 W. R. Schmitt and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0166-218X(92)00038-N">Linear trees and RNA secondary structure</a>, Discrete Appl. Math., 51, 317-323, 1994.
%H A110318 P. R. Stein and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1978), 261-272.
%H A110318 M. Vauchassade de Chaumont and G. Viennot, <a href="http://www.emis.de/journals/SLC/opapers/s08viennot.pdf">Polynômes orthogonaux et problèmes d'énumeration en biologie moléculaire</a>, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
%F A110318 G.f.: 2(1-2z-z^3-(1-z)Q)/(z^5*Q(1-z+z^2+Q)^2), where Q:=sqrt(1-2z-z^2-2z^3+z^4).
%F A110318 a(n) = Sum_{k>=0} k*A110317(n+5,k).
%e A110318 a(0)=1 because in the 8 (=A004148(5)) RNA secondary structures of size 5, namely 1/2/3/4/5, 13/2/4/5, 14/2/3/5, 15/2/3/4, 1/24/3/5, 1/25/3/4, 1/2/35/4 and 15/24/3 we have altogether 1 arc covered by another arc: in 15/24/3 the arc 24 is covered by the arc 15.
%p A110318 Q:=sqrt(1-2*z-z^2-2*z^3+z^4): G:=2*(1-2*z-z^3-(1-z)*Q)/Q/z^5/(1-z+z^2+Q)^2: Gser:=series(G,z=0,38): 1,seq(coeff(Gser,z^n),n=1..30);
%t A110318 CoefficientList[Series[2 (1 - 2 x - x^3 - (1 - x) Sqrt[1 - 2 x - x^2 - 2 x^3 + x^4]) / (x^5 Sqrt[1 - 2 x - x^2 - 2 x^3 + x^4] (1 - x + x^2 + Sqrt[1 - 2 x - x^2 - 2 x^3 + x^4])^2), {x, 0, 33}], x] (* _Vincenzo Librandi_, Jun 13 2017 *)
%Y A110318 Cf. A004148, A110317.
%K A110318 nonn
%O A110318 0,2
%A A110318 _Emeric Deutsch_, Jul 19 2005