This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110319 #17 Jul 06 2018 09:47:12 %S A110319 1,0,1,0,1,1,0,0,3,1,0,0,1,6,1,0,0,0,6,10,1,0,0,0,1,20,15,1,0,0,0,0, %T A110319 10,50,21,1,0,0,0,0,1,50,105,28,1,0,0,0,0,0,15,175,196,36,1,0,0,0,0,0, %U A110319 1,105,490,336,45,1,0,0,0,0,0,0,21,490,1176,540,55,1,0,0,0,0,0,0,1,196 %N A110319 Triangle read by rows: T(n,k) (1 <= k <= n) is number of RNA secondary structures of size n (i.e., with n nodes) having k blocks (an RNA secondary structure can be viewed as a restricted noncrossing partition). %C A110319 Row sums yield the RNA secondary structure numbers (A004148). %C A110319 Column sums yield the Catalan numbers (A000108). %C A110319 A rearrangement of the Narayana numbers triangle (A001263). %H A110319 Andrew Howroyd, <a href="/A110319/b110319.txt">Table of n, a(n) for n = 1..1275</a> %H A110319 W. R. Schmitt and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0166-218X(92)00038-N">Linear trees and RNA secondary structure</a>, Discrete Appl. Math., 51, 317-323, 1994. %H A110319 P. R. Stein and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1978), 261-272. %H A110319 M. Vauchassade de Chaumont and G. Viennot, <a href="http://www.emis.de/journals/SLC/opapers/s08viennot.html">Polynômes orthogonaux et problèmes d'énumeration en biologie moléculaire</a>, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86. %F A110319 Sum_{k=1..n} k*T(n,k) = A110320(n). %F A110319 T(n,k) = (1/k)*binomial(k, n-k)*binomial(k, n-k+1). %F A110319 G.f.: (1 - tz - tz^2 - sqrt(1 - 2tz - 2tz^2 + t^2*z^2 - 2t^2*z^3 + t^2*z^4))/(2tz^2). %e A110319 Triangle begins: %e A110319 1; %e A110319 0, 1; %e A110319 0, 1, 1; %e A110319 0, 0, 3, 1; %e A110319 0, 0, 1, 6, 1; %e A110319 0, 0, 0, 6, 10, 1; %e A110319 0, 0, 0, 1, 20, 15, 1; %e A110319 0, 0, 0, 0, 10, 50, 21, 1; %e A110319 0, 0, 0, 0, 1, 50, 105, 28, 1; %e A110319 0, 0, 0, 0, 0, 15, 175, 196, 36, 1; %e A110319 ... %e A110319 T(5,4)=6 because we have 13/2/4/5, 14/2/3/5. 15/2/3/4, 1/24/3/5, 1/25/3/4 and 1/2/35/4. %p A110319 T:=(n,k)->(1/k)*binomial(k,n-k)*binomial(k,n-k+1): for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form %t A110319 T[n_, k_] := (1/k)*Binomial[k, n - k]*Binomial[k, n - k + 1]; %t A110319 Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 06 2018, from Maple *) %o A110319 (PARI) T(n,k) = (1/k)*binomial(k, n-k)*binomial(k, n-k+1); \\ _Andrew Howroyd_, Feb 27 2018 %Y A110319 Cf. A000108, A001263, A004148, A089732, A110320. %K A110319 nonn,tabl %O A110319 1,9 %A A110319 _Emeric Deutsch_, Jul 19 2005