cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110320 Number of blocks in all RNA secondary structures with n nodes (an RNA secondary structure can be viewed as a restricted noncrossing partition).

Original entry on oeis.org

1, 2, 5, 13, 32, 80, 201, 505, 1273, 3217, 8146, 20668, 52531, 133726, 340909, 870213, 2223958, 5689807, 14571335, 37350585, 95821071, 246015677, 632088930, 1625119218, 4180845277, 10762096850, 27718352411, 71426753423, 184146711578
Offset: 1

Views

Author

Emeric Deutsch, Jul 19 2005

Keywords

Comments

Antidiagonal sums of A132812. - Philippe Deléham, Jun 08 2013

Examples

			a(4)=13 because the 4 (=A004148(4)) RNA secondary structures of size 4, namely 1/2/3/4, 13/2/4, 14/2/3 and 1/24/3, have altogether 4+3+3+3=13 blocks.
		

Crossrefs

Programs

  • Maple
    G:=1/2*(1-z-z^2)/z^2/(1-2*z-z^2-2*z^3+z^4)^(1/2)-1/2*1/(z^2): Gser:=series(G,z=0,37): seq(coeff(Gser,z^n),n=1..33);
  • Mathematica
    Table[Sum[Binomial[n-j+1,j]Binomial[n-j+1,j-1],{j, 0, n}],{n,1,25}] (* Benedict W. J. Irwin, Sep 24 2016 *)

Formula

G.f.: (1-z-z^2)/(2*z^2*sqrt(1-2*z-z^2-2*z^3+z^4))-1/(2*z^2).
a(n) = Sum_{k=1..n} k*A110319(n,k).
Conjecture: a(n) = (A051292(n+2)-A051286(n+1))/2. - Gerald McGarvey, Jan 14 2007
a(n) = (A051286(n+2)-A051286(n+1)-A051286(n))/2. - Benedict W. J. Irwin, Sep 24 2016
a(n) ~ sqrt(4 + 9/sqrt(5)) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+1)). - Vaclav Kotesovec, Sep 25 2016, equivalently, a(n) ~ phi^(2*n + 3) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
D-finite with recurrence (n+2)*a(n) +3*(-n-1)*a(n-1) +(n-7)*a(n-3) +2*(2*n-3)*a(n-4) +(n-5)*a(n-5) +(-n+4)*a(n-6)=0. - R. J. Mathar, Feb 21 2020