cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110325 Row sums of number triangle related to the Jacobsthal numbers.

This page as a plain text file.
%I A110325 #27 Nov 02 2024 14:58:15
%S A110325 1,0,-5,-14,-27,-44,-65,-90,-119,-152,-189,-230,-275,-324,-377,-434,
%T A110325 -495,-560,-629,-702,-779,-860,-945,-1034,-1127,-1224,-1325,-1430,
%U A110325 -1539,-1652,-1769,-1890,-2015,-2144,-2277,-2414,-2555,-2700,-2849,-3002,-3159,-3320,-3485,-3654,-3827,-4004,-4185,-4370
%N A110325 Row sums of number triangle related to the Jacobsthal numbers.
%C A110325 Essentially the same sequence as A014106.
%C A110325 Rows sums of A110324. Results from a general construction: the row sums of the inverse of the number triangle whose columns have e.g.f. (x^k/k!)/(1 - a*x - b*x^2), g.f. (1 - (a+2)*x - (2*b-a-1)*x^2)/(1-x)^3, and general term 1 + (b-a)*n - b*n^2. This is the binomial transform of (1, -a, -2b, 0, 0, 0, ...).
%H A110325 Vincenzo Librandi, <a href="/A110325/b110325.txt">Table of n, a(n) for n = 0..1000</a>
%H A110325 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A110325 a(n) = 1 + n - 2*n^2.
%F A110325 G.f.: (1 - 3*x - 2*x^2)/(1-x)^3.
%F A110325 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Vincenzo Librandi_, Jul 08 2012
%F A110325 From _Elmo R. Oliveira_, Nov 02 2024: (Start)
%F A110325 E.g.f.: exp(x)*(1 - x - 2*x^2).
%F A110325 a(n) = -A005408(n)*A110325(n). (End)
%t A110325 CoefficientList[Series[(1-3x-2x^2)/(1-x)^3,{x,0,50}],x] (* _Vincenzo Librandi_, Jul 08 2012 *)
%t A110325 LinearRecurrence[{3,-3,1},{1,0,-5},50] (* _Harvey P. Dale_, Oct 20 2024 *)
%o A110325 (Magma) [1+n-2*n^2: n in [0..50]]; // _Vincenzo Librandi_, Jul 08 2012
%o A110325 (PARI) a(n)=1+n-2*n^2 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y A110325 Cf. A014106 (essentially the same sequence), A110324.
%Y A110325 Cf. A005408, A110325.
%K A110325 easy,sign
%O A110325 0,3
%A A110325 _Paul Barry_, Jul 20 2005