cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110335 Number of valleys (i.e., (1,-1) followed by (1,1)) at level zero in all peakless Motzkin paths of length n+6 (can be easily translated into RNA secondary structure terminology).

Original entry on oeis.org

1, 4, 12, 34, 92, 242, 627, 1608, 4096, 10388, 26269, 66304, 167161, 421162, 1060816, 2671908, 6730941, 16961430, 42758695, 107843080, 272136858, 687106696, 1735849310, 4387895300, 11098372185, 28088028612, 71128006458, 180224822694
Offset: 0

Views

Author

Emeric Deutsch, Jul 20 2005

Keywords

Examples

			a(1)=4 because among the 37 (=A004148(7)) peakless Motzkin paths of length 7 only HUH(DU)HD, UH(DU)HDH, UH(DU)HHD and UHH(DU)HD have valleys at level zero (shown between parentheses; here U=(1,1), H=(1,0), D=(1,-1)).
		

Crossrefs

Programs

  • Maple
    Q:=sqrt(1-2*z-z^2-2*z^3+z^4): G:=8/(1-z+z^2+Q)^2/(1-2*z-z^2+z^4+(1-z-z^2)*Q): Gser:=series(G,z=0,34): 1,seq(coeff(Gser,z^n),n=1..31);

Formula

a(n) = Sum_{k>=0} k*A110333(n+6,k).
G.f.: 8/((1 - z + z^2 + Q)^2*(1 - 2z - z^2 + z^4 + (1 - z - z^2)Q)), where Q = sqrt(1 - 2z - z^2 - 2z^3 + z^4).
D-finite with recurrence +(n+10)*(79*n+56)*a(n) +(79*n^2+300*n-6319)*a(n-1) +12*(-65*n^2-383*n+259)*a(n-2) +(59*n^2-330*n-1751)*a(n-3) +6*(-28*n^2-83*n-301)*a(n-4) +(691*n^2+666*n-343)*a(n-5) -(227*n+280)*(n-2)*a(n-6)=0. - R. J. Mathar, Jul 24 2022