cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110358 Beginning with 3, the least prime which is the product of one or more previous terms + 2.

Original entry on oeis.org

3, 5, 7, 17, 19, 23, 37, 53, 59, 61, 71, 73, 97, 107, 109, 113, 163, 179, 181, 257, 293, 307, 347, 349, 359, 367, 373, 401, 439, 487, 491, 499, 547, 557, 631, 751, 773, 797, 853, 881, 883, 887, 907, 971, 1009, 1039, 1049, 1051, 1097, 1103, 1123, 1283, 1297
Offset: 1

Views

Author

Amarnath Murthy, Jul 23 2005

Keywords

Comments

Conjecture: The sequence is infinite.
Subbarao & Yip prove that if there is an integer m such that the equation Phi_2(x) = m has a unique solution, where Phi_2 is the 2nd Schemmel totient function (A058026), then x == 0 (mod a(n)^2) for each term in this sequence. They conjectured an analog to Carmichael's conjecture, that this equation has no unique solution to any integer m, and prove that any counterexample to this conjecture is > 10^120000, a bound calculated from the first 10000 terms of this sequence. A proof that this sequence is infinite would prove the conjecture. - Amiram Eldar, Mar 25 2017

Examples

			After 3, 5 and 7 the next term is 3*5 + 2 = 17, then 17 + 2 = 19, then 3*7 + 2 = 23, then 5*7 + 2 = 37, etc.
		

Crossrefs

Cf. A058026.

Programs

  • Mathematica
    L={3}; p=3; While[Length[L] < 100, p = NextPrime@p; If[SquareFreeQ[p - 2] && SubsetQ[L, First /@ FactorInteger[p - 2]], AppendTo[L, p]]]; L (* Giovanni Resta, Mar 25 2017 *)

Extensions

More terms from John Pammer (jcp5027(AT)psu.edu), Oct 10 2005
Corrected and extended by Joshua Zucker, May 08 2006