cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110382 Numbers which are sum of distinct unary numbers (containing only ones), i.e., numbers which are sum of distinct numbers of the form (10^k - 1)/9.

This page as a plain text file.
%I A110382 #46 Feb 03 2025 13:55:50
%S A110382 1,11,12,111,112,122,123,1111,1112,1122,1123,1222,1223,1233,1234,
%T A110382 11111,11112,11122,11123,11222,11223,11233,11234,12222,12223,12233,
%U A110382 12234,12333,12334,12344,12345,111111,111112,111122,111123,111222,111223
%N A110382 Numbers which are sum of distinct unary numbers (containing only ones), i.e., numbers which are sum of distinct numbers of the form (10^k - 1)/9.
%C A110382 Not the same as A096299, since a(1023) = 1234567900 which is not in lexicographic order. - _Ralf Stephan_, May 17 2007
%H A110382 Georg Fischer, <a href="/A110382/b110382.txt">Table of n, a(n) for n = 1..16384</a> [First 1023 terms from David A. Corneth]
%F A110382 G.f.: 1/(1-x) * Sum_{k>=0} (10^(k+1) - 1)/9 * x^2^k/(1 + x^2^k). - _Ralf Stephan_, May 17 2007
%F A110382 a(n) = 10*a(floor(n/2)) + A000120(n) = Sum_{k=0..floor(log_2(n))} A000120(floor(n/(2^k)))*10^k. - _Mikhail Kurkov_, May 08 2019
%F A110382 a(n) = a(floor(n/2)) + A007088(n) = (10*A007088(n) - A000120(n))/9. - _Mikhail Kurkov_, Mar 03 2021
%p A110382 f:= proc(n) local L,i:
%p A110382   L:= convert(n,base,2);
%p A110382   add(L[i]*(10^i-1)/9, i=1..nops(L))
%p A110382 end proc:
%p A110382 map(f, [$1..100]); # _Robert Israel_, Feb 03 2025
%t A110382 Nest[Append[#1, 10 #1[[Floor[#2/2] ]] + DigitCount[#2, 2, 1]] & @@ {#, Length[#] + 1} &, {1}, 36] (* _Michael De Vlieger_, Mar 12 2021 *)
%o A110382 (PARI) a(n) = sum(k=0, log(n)\log(2), hammingweight(n\(2^k))*10^k); \\ _Michel Marcus_, May 09 2019
%o A110382 (PARI) a(n) = my(b = Vecrev(binary(n))); sum(i = 1, #b, b[i] * (10^i-1)) / 9 \\ _David A. Corneth_, May 19 2019
%Y A110382 Cf. A096299.
%K A110382 easy,nonn
%O A110382 1,2
%A A110382 _Amarnath Murthy_, Jul 25 2005
%E A110382 a(1024) ff. corrected by _Georg Fischer_, Feb 03 2025