This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110383 #24 Jan 09 2025 09:49:54 %S A110383 11,21,241,55681,3099816961,9608865160705105921, %T A110383 92330289676612360941221747472778199041, %U A110383 8524882391767151111154918892947398067446166736305624023874497267723631329281 %N A110383 Integers with mutual residues of 10. %C A110383 This is the special case k=10 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1..n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. %H A110383 A. V. Aho and N. J. A. Sloane, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/11-4/aho-a.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437. %H A110383 A. V. Aho and N. J. A. Sloane, <a href="/A000058/a000058.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!) %H A110383 Stanislav Drastich, <a href="http://arxiv.org/abs/math/0202010">Rapid growth sequences</a>, arXiv:math/0202010 [math.GM], 2002. %H A110383 S. W. Golomb, <a href="http://www.jstor.org/stable/2311857">On certain nonlinear recurring sequences</a>, Amer. Math. Monthly 70 (1963), 403-405. %H A110383 S. Mustonen, <a href="http://www.survo.fi/papers/resseq.pdf">On integer sequences with mutual k-residues</a> %H A110383 <a href="/index/Aa#AHSL">Index entries for sequences of form a(n+1)=a(n)^2 + ...</a>. %F A110383 a(n) ~ c^(2^n), where c = 1.9797221926746931491020959969764290497942241392143973226882604062455515473... . - _Vaclav Kotesovec_, Dec 17 2014 %t A110383 RecurrenceTable[{a[1]==11, a[n]==a[n-1]*(a[n-1]-10)+10}, a, {n, 1, 10}] (* _Vaclav Kotesovec_, Dec 17 2014 *) %Y A110383 Column k=10 of A177888. %K A110383 nonn %O A110383 1,1 %A A110383 _Seppo Mustonen_, Sep 04 2005