A110388 a(n) = F(n)*F(n+1) mod 9, where F(n) = n-th Fibonacci number.
1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7
Offset: 1
Examples
a(5) = 5*8 mod 9 = 4.
Programs
-
Maple
with(combinat): a:=n->fibonacci(n)*fibonacci(n+1) mod 9: seq(a(n),n=1..130); # Emeric Deutsch, Jul 31 2005
Extensions
More terms from Emeric Deutsch, Jul 31 2005