This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110439 #10 Dec 11 2019 23:43:28 %S A110439 1,1,1,3,2,1,8,5,3,1,21,14,8,4,1,55,38,23,12,5,1,144,102,65,36,17,6,1, %T A110439 377,273,180,106,54,23,7,1,987,728,494,304,166,78,30,8,1,2584,1936, %U A110439 1346,858,494,251,109,38,9,1 %N A110439 Triangular array formed by the odd-indexed Fibonacci numbers. %C A110439 The leftmost column of the array is the odd-indexed Fibonacci numbers plus leading one. %D A110439 A. Nkwanta, A Riordan matrix approach to unifying a selected class of combinatorial arrays, Congressus Numerantium, 160 (2003), pp. 33-55. %D A110439 A. Nkwanta, A note on Riordan matrices, Contemporary Mathematics Series, AMS, 252 (1999), pp. 99-107. %D A110439 A. Nkwanta, Lattice paths, generating functions and the Riordan group, Ph.D. Thesis, Howard University, Washington DC 1997. %H A110439 Naiomi T. Cameron and Asamoah Nkwanta, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Cameron/cameron46.html">On Some (Pseudo) Involutions in the Riordan Group</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7. %F A110439 Riordan array: ((1-2z+z^2)/(1-3z+z^2), ((1-z+z^2)-sqrt(1-2z-z^2-2z^3+z^4))/2z), R(n, k). Recurrence: R(n+1, 0) = 2R(n, 0) + Sum_{j>=1} R(n-j, 0), leftmost column. For other columns: R(n+1, k) = R(n, k-1) + R(n, k) + Sum_{j>=1} R(n-j, k+j). %e A110439 Triangle starts: %e A110439 1; %e A110439 1, 1; %e A110439 3, 2, 1; %e A110439 8, 5, 3, 1; %e A110439 21, 14, 8, 4, 1; %Y A110439 Cf. A097724. %K A110439 easy,nonn,tabl %O A110439 0,4 %A A110439 Asamoah Nkwanta (nkwanta(AT)jewel.morgan.edu), Aug 09 2005