cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110439 Triangular array formed by the odd-indexed Fibonacci numbers.

This page as a plain text file.
%I A110439 #10 Dec 11 2019 23:43:28
%S A110439 1,1,1,3,2,1,8,5,3,1,21,14,8,4,1,55,38,23,12,5,1,144,102,65,36,17,6,1,
%T A110439 377,273,180,106,54,23,7,1,987,728,494,304,166,78,30,8,1,2584,1936,
%U A110439 1346,858,494,251,109,38,9,1
%N A110439 Triangular array formed by the odd-indexed Fibonacci numbers.
%C A110439 The leftmost column of the array is the odd-indexed Fibonacci numbers plus leading one.
%D A110439 A. Nkwanta, A Riordan matrix approach to unifying a selected class of combinatorial arrays, Congressus Numerantium, 160 (2003), pp. 33-55.
%D A110439 A. Nkwanta, A note on Riordan matrices, Contemporary Mathematics Series, AMS, 252 (1999), pp. 99-107.
%D A110439 A. Nkwanta, Lattice paths, generating functions and the Riordan group, Ph.D. Thesis, Howard University, Washington DC 1997.
%H A110439 Naiomi T. Cameron and Asamoah Nkwanta, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Cameron/cameron46.html">On Some (Pseudo) Involutions in the Riordan Group</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
%F A110439 Riordan array: ((1-2z+z^2)/(1-3z+z^2), ((1-z+z^2)-sqrt(1-2z-z^2-2z^3+z^4))/2z), R(n, k). Recurrence: R(n+1, 0) = 2R(n, 0) + Sum_{j>=1} R(n-j, 0), leftmost column. For other columns: R(n+1, k) = R(n, k-1) + R(n, k) + Sum_{j>=1} R(n-j, k+j).
%e A110439 Triangle starts:
%e A110439    1;
%e A110439    1,  1;
%e A110439    3,  2,  1;
%e A110439    8,  5,  3,  1;
%e A110439   21, 14,  8,  4,  1;
%Y A110439 Cf. A097724.
%K A110439 easy,nonn,tabl
%O A110439 0,4
%A A110439 Asamoah Nkwanta (nkwanta(AT)jewel.morgan.edu), Aug 09 2005