This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110446 #7 Oct 08 2016 03:20:33 %S A110446 1,2,1,8,4,1,32,24,6,1,136,128,48,8,1,592,680,320,80,10,1,2624,3552, %T A110446 2040,640,120,12,1,11776,18368,12432,4760,1120,168,14,1,53344,94208, %U A110446 73472,33152,9520,1792,224,16,1,243392,480096,423936,220416,74592,17136 %N A110446 Triangle of Delannoy paths counted by number of diagonal steps not preceded by an east step. %C A110446 T(n,k) = number of Delannoy paths (A001850) of steps east(E), north(N) and diagonal (D) (i.e., northeast) from (0,0) to (n,n) containing k Ds not preceded by an E. %F A110446 G.f. G(z, t)=Sum_{n>=k>=0}T(n, k)*z^n*t^k is given by G(z, t)= (1 - z(4 + 2*t) - z^2(4 - 4*t - t^2))^(-1/2) %e A110446 Table begins %e A110446 \ k...0....1....2....3....4.... %e A110446 n\ %e A110446 0 |...1 %e A110446 1 |...2....1 %e A110446 2 |...8....4....1 %e A110446 3 |..32...24....6....1 %e A110446 4 |.136..128...48....8....1 %e A110446 5 |.592..680..320...80...10....1 %e A110446 The paths ENDD, NDDE, DEND, DNDE, DDEN, DDNE each have 2 Ds not preceded by an E, %e A110446 and so T(3,2)=6. %t A110446 T[n_, k_] := SeriesCoefficient[(1-z(4 + 2*t) - z^2 (4 - 4*t - t^2))^(-1/2), {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 08 2016 *) %Y A110446 Column k=0 is A006139. %K A110446 nonn,tabl %O A110446 0,2 %A A110446 _David Callan_, Jul 20 2005