cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110446 Triangle of Delannoy paths counted by number of diagonal steps not preceded by an east step.

This page as a plain text file.
%I A110446 #7 Oct 08 2016 03:20:33
%S A110446 1,2,1,8,4,1,32,24,6,1,136,128,48,8,1,592,680,320,80,10,1,2624,3552,
%T A110446 2040,640,120,12,1,11776,18368,12432,4760,1120,168,14,1,53344,94208,
%U A110446 73472,33152,9520,1792,224,16,1,243392,480096,423936,220416,74592,17136
%N A110446 Triangle of Delannoy paths counted by number of diagonal steps not preceded by an east step.
%C A110446 T(n,k) = number of Delannoy paths (A001850) of steps east(E), north(N) and diagonal (D) (i.e., northeast) from (0,0) to (n,n) containing k Ds not preceded by an E.
%F A110446 G.f. G(z, t)=Sum_{n>=k>=0}T(n, k)*z^n*t^k is given by G(z, t)= (1 - z(4 + 2*t) - z^2(4 - 4*t - t^2))^(-1/2)
%e A110446 Table begins
%e A110446 \ k...0....1....2....3....4....
%e A110446 n\
%e A110446 0 |...1
%e A110446 1 |...2....1
%e A110446 2 |...8....4....1
%e A110446 3 |..32...24....6....1
%e A110446 4 |.136..128...48....8....1
%e A110446 5 |.592..680..320...80...10....1
%e A110446 The paths ENDD, NDDE, DEND, DNDE, DDEN, DDNE each have 2 Ds not preceded by an E,
%e A110446 and so T(3,2)=6.
%t A110446 T[n_, k_] := SeriesCoefficient[(1-z(4 + 2*t) - z^2 (4 - 4*t - t^2))^(-1/2), {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 08 2016 *)
%Y A110446 Column k=0 is A006139.
%K A110446 nonn,tabl
%O A110446 0,2
%A A110446 _David Callan_, Jul 20 2005