cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110447 Number of permutations containing 3241 patterns only as part of 35241 patterns.

This page as a plain text file.
%I A110447 #24 Jul 10 2023 10:28:41
%S A110447 1,1,2,6,23,104,531,2982,18109,117545,808764,5862253,44553224,
%T A110447 353713232,2924697019,25124481690,223768976093,2062614190733,
%U A110447 19646231085928,193102738376890,1956191484175505,20401540100814142,218825717967033373,2411606083999341827
%N A110447 Number of permutations containing 3241 patterns only as part of 35241 patterns.
%C A110447 a(n) = # permutations on [n] in which the (scattered) pattern 3241 only occurs as part of a 35241 pattern. For example, a(5) counts all 24 permutations on [4] except 3241 and the permutation p = 42531 is not counted by a(6) because the entries 4251 form a 3241 pattern but p fails to contain an entry larger than 5 between its entries 4 and 2.
%C A110447 a(n) = # (31-4-2)-avoiding perms on [n]. (31-4-2)-avoiding means the "3" and "1" must be consecutive in the permutation while the "4" and "2' may be scattered. For example, 35142 contains the (scattered) pattern 3-1-4-2 but avoids 31-4-2. - _David Callan_, Oct 11 2005
%H A110447 David Callan, <a href="http://arxiv.org/abs/math/0507169">A combinatorial interpretation of the eigensequence for composition</a>, arXiv:math/0507169 [math.CO], 2005.
%H A110447 David Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Callan/callan96.html">A Combinatorial Interpretation of the Eigensequence for Composition</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
%H A110447 David Callan, <a href="http://arxiv.org/abs/math/0510211">A Wilf equivalence related to two stack sortable permutations</a>, arXiv:math/0510211 [math.CO], 2005.
%H A110447 David Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Callan/callan2.html">Lagrange Inversion Counts 3bar-5241-Avoiding Permutations</a>, J. Int. Seq. 14 (2011) # 11.9.4
%H A110447 Lara Pudwell, <a href="https://doi.org/10.37236/301">Enumeration schemes for permutations avoiding barred patterns</a>, El. J. Combinat. 17 (1) (2010) R29.
%p A110447 A:= proc(n) option remember; unapply(`if`(n=0, x,
%p A110447       A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x)
%p A110447     end:
%p A110447 a:= n-> coeff(A(1+n)(x), x, 1+n):
%p A110447 seq(a(n), n=0..23);  # _Alois P. Heinz_, Jul 10 2023
%t A110447 (* The following recurrence for a(n) is derived in the first linked paper *)
%t A110447 a[0]=c[1]=1
%t A110447 a[n_]/;n>=1 := a[n] = Sum[a[i]c[n-i], {i, 0, n-1}]
%t A110447 c[n_]/;n>=2 := c[n] = Sum[i a[n-1, i], {i, n-1}]
%t A110447 a[n_, k_]/;1<=k<=n-1 := a[n, k] = Sum[a[i]a[n-1-i, j], {i, 0, k-1}, {j, k-i, n-1-i}]
%t A110447 a[ n_, n_ ]/;n>=1 := a[n, n] = a[n-1]
%t A110447 (* The following Mathematica code generates all the permutations counted by a(n).
%t A110447 Run the code; then Aset[n] returns the permutations counted by a(n). *)
%t A110447 Aset[0] = { { } }
%t A110447 Aset[1] = { {1} }
%t A110447 Cset[1] = { {1} }
%t A110447 Aset[n_, n_ ]/;n>=1 := Aset[n, n ] = Map[Join[{n}, # ]&, Aset[n-1 ] ]
%t A110447 processBn[n_, single_, i_] := Module[{base=Drop[Range[n], {i}]}, Join[{i}, base[[single]] ] ]
%t A110447 Cset[n_]/;n>=2 := Cset[n] = Flatten[Table[Map[processBn[n, #, i]&, Aset[n-1, j-1]], {j, 2, n}, {i, j-1}], 2]
%t A110447 processAn[pair_, j_]:=Module[{p1=pair[[1]], p2=pair[[2]]}, Flatten[Insert[j+p2, p1, 2] ] ]
%t A110447 Aset[ n_ ]/;n>=2 := Aset[ n ] = Flatten[ Table[ Map[ processAn[ #, j ]&, CartesianProduct[ Aset[ j ], Cset[ n-j ] ] ], {j, 0, n-1} ], 1 ]
%t A110447 processAnk[n_, k_, pair_, j_]:=Module[{p1=pair[[1]], p2=pair[[2]], base}, base=Complement[Range[j+1, n], {k}]; Join[{k}, p1, base[[p2]]] ]
%t A110447 Aset[ n_, k_ ]/;1<=k<=n-1 := Aset[ n, k ] = Flatten[ Table[ Map[ processAnk[ n, k, #, j ]&, CartesianProduct[ Aset[ j ], Aset[ n-1-j, r ] ] ], {j, 0, k-1}, {r, k-j, n-1-j} ], 2 ]
%Y A110447 This sequence is A030266 shifted left.
%K A110447 nonn
%O A110447 0,3
%A A110447 _David Callan_, Jul 20 2005