cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110451 a(n) = n*(4*n^2 + 2*n + 1).

This page as a plain text file.
%I A110451 #16 Sep 08 2022 08:45:20
%S A110451 0,7,42,129,292,555,942,1477,2184,3087,4210,5577,7212,9139,11382,
%T A110451 13965,16912,20247,23994,28177,32820,37947,43582,49749,56472,63775,
%U A110451 71682,80217,89404,99267,109830,121117,133152,145959,159562,173985,189252
%N A110451 a(n) = n*(4*n^2 + 2*n + 1).
%C A110451 a(n) = A110449(2*n,n), central terms in triangle A110449.
%C A110451 2*a(n) is the sum of the consecutive integers from A000384(n)+1 to A000384(n+1)-1. - _Bruno Berselli_, Jun 27 2018
%H A110451 G. C. Greubel, <a href="/A110451/b110451.txt">Table of n, a(n) for n = 0..5000</a>
%H A110451 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A110451 From _G. C. Greubel_, Aug 24 2017: (Start)
%F A110451 a(n) = 4*a(n-1) - 6*a(n-1) + 4*a(n-2) - a(n-4).
%F A110451 G.f.: (7*x + 14*x^2 + 3*x^3)/(1 - x)^4.
%F A110451 E.g.f.: x*(7 + 14*x + 4*x^2)*exp(x). (End)
%p A110451 seq(n*(4*n^2+2*n+1),n=0..40); # _Muniru A Asiru_, Jun 27 2018
%t A110451 Table[n*(4*n^2 + 2*n + 1), {n, 0, 50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,7,42,129}, 50] (* _G. C. Greubel_, Aug 24 2017 *)
%o A110451 (Magma)[n*(4*n^2+2*n+1): n in [0..40]]; // _Vincenzo Librandi_, Dec 26 2010
%o A110451 (PARI) x='x+O('x^50); Vec((7*x + 14*x^2 + 3*x^3)/(1 - x)^4) \\ _G. C. Greubel_, Aug 24 2017
%o A110451 (GAP) List([0..40],n->n*(4*n^2+2*n+1)); # _Muniru A Asiru_, Jun 27 2018
%Y A110451 Cf. A000384, A110449.
%K A110451 nonn,easy
%O A110451 0,2
%A A110451 _Reinhard Zumkeller_, Jul 21 2005