This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110489 #8 Aug 29 2017 04:52:24 %S A110489 1,2,5,14,43,142,497,1828,7037,28326,119361,527748,2454929,12041410, %T A110489 62354641,340840118,1963757863,11896370734,75549183725,501393978466, %U A110489 3467199478543,24916100775758,185646100106929,1431332539961350 %N A110489 Row sums of a triangle based on the Catalan numbers. %C A110489 Row sums of A110488. %H A110489 G. C. Greubel, <a href="/A110489/b110489.txt">Table of n, a(n) for n = 0..595</a> %F A110489 a(n) = Sum_{k=0..n} Sum_{j=0..(n-k)} 2*(j+1)*(k-1)^j*C(2*(n-k)+1, n-k-j)/ (n-k+j+2). %t A110489 T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 50}] (* _G. C. Greubel_, Aug 29 2017 *) %o A110489 (PARI) a(n) = sum(k=0, n, sum(j=0, (n-k), 2*(j+1)*(k-1)^j*binomial(2*(n-k)+1, n-k-j)/ (n-k+j+2))); \\ _Michel Marcus_, Aug 29 2017 %Y A110489 Cf. A110488. %K A110489 easy,nonn %O A110489 0,2 %A A110489 _Paul Barry_, Jul 22 2005