This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110503 #10 Jan 17 2018 03:23:41 %S A110503 1,1,1,1,-1,1,1,-2,1,1,1,-1,1,-1,1,1,-1,1,-2,1,1,1,-1,1,-1,1,-1,1,1, %T A110503 -1,1,-1,1,-2,1,1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-2,1,1,1,-1, %U A110503 1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-2,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1 %N A110503 Triangle, read by rows, which shifts one column left under matrix inverse. %C A110503 The unsigned columns of the matrix logarithm of this triangle are all equal to A110504. %F A110503 T(n, k) = +1 when k == 0 (mod 2), T(n, k)=-1 when k == 1 (mod 2), except for T(k+2, k) = -2 when k == 1 (mod 2) and T(n, n) = 1. %F A110503 G.f. for column k of matrix power A110503^m (ignoring leading zeros): cos(m*arccos(1-x^2/2)) + (-1)^k*sin(m*arccos(1-x^2/2))*(1-x/2)/sqrt(1-x^2/4)*(1+x)/(1-x). %e A110503 Triangle begins: %e A110503 1; %e A110503 1, 1; %e A110503 1, -1, 1; %e A110503 1, -2, 1, 1; %e A110503 1, -1, 1, -1, 1; %e A110503 1, -1, 1, -2, 1, 1; %e A110503 1, -1, 1, -1, 1, -1, 1; %e A110503 1, -1, 1, -1, 1, -2, 1, 1; %e A110503 1, -1, 1, -1, 1, -1, 1, -1, 1; %e A110503 1, -1, 1, -1, 1, -1, 1, -2, 1, 1; ... %e A110503 The matrix inverse drops the first column: %e A110503 1; %e A110503 -1, 1; %e A110503 -2, 1, 1; %e A110503 -1, 1, -1, 1; %e A110503 -1, 1, -2, 1, 1; %e A110503 -1, 1, -1, 1, -1, 1; ... %e A110503 The matrix logarithm equals: %e A110503 0; %e A110503 1/1!, 0; %e A110503 3/2!, -1/1!, 0; %e A110503 7/3!, -3/2!, 1/1!, 0; %e A110503 30/4!, -7/3!, 3/2!, -1/1!, 0; %e A110503 144/5!, -30/4!, 7/3!, -3/2!, 1/1!, 0; %e A110503 876/6!, -144/5!, 30/4!, -7/3!, 3/2!, -1/1!, 0; ... %e A110503 unsigned columns of which all equal A110505. %o A110503 (PARI) T(n,k)=matrix(n+1,n+1,r,c,if(r>=c, if(r==c || c%2==1,1,if(r%2==0 && r==c+2,-2,-1))))[n+1,k+1] %Y A110503 Cf. A110504 (matrix log), A110505 (column 0 of log). %Y A110503 Cf. A111940 (variant). %K A110503 sign,tabl %O A110503 0,8 %A A110503 _Paul D. Hanna_, Jul 23 2005