This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110527 #27 May 25 2024 15:33:20 %S A110527 0,1,8,29,128,537,2280,9653,40896,173233,733832,3108557,13168064, %T A110527 55780809,236291304,1000946021,4240075392,17961247585,76085065736, %U A110527 322301510525,1365291107840,5783465941881,24499154875368 %N A110527 a(n+3) = 3*a(n+2) + 5*a(n+1) + a(n), a(0) = 0, a(1) = 1, a(2) = 8. %C A110527 A048878(n) = a(n) + a(n+1). Compare with A110526. %H A110527 G. C. Greubel, <a href="/A110527/b110527.txt">Table of n, a(n) for n = 0..1000</a> %H A110527 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,5,1). %F A110527 G.f.: -x*(1+5*x)/((1+x)*(x^2+4*x-1)). %F A110527 a(n) = (-1)^n + 3*A001076(n) - A015448(n). - _Ehren Metcalfe_, Nov 18 2017 %F A110527 a(n) = (-1)^n + 2*A110526(n) + A110679(n-2) for n >= 2. - Yomna Bakr and _Greg Dresden_, May 25 2024 %p A110527 seriestolist(series(-x*(1+5*x)/((1+x)*(x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1lesseq[(- 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj')(+ .5'i + .5i' + .5'jj' + .5'kk')], apart from initial term. %t A110527 LinearRecurrence[{3,5,1},{0,1,8},30] (* _Harvey P. Dale_, Feb 12 2015 *) %o A110527 (PARI) x='x+O('x^50); concat(0, Vec(-x*(1+5*x)/((1+x)*(x^2+4*x-1)))) \\ _G. C. Greubel_, Aug 30 2017 %Y A110527 Cf. A110526, A110528, A033887, A001076, A049661, A033887. %K A110527 easy,nonn %O A110527 0,3 %A A110527 _Creighton Dement_, Jul 24 2005