A110585 Smallest number k of consecutive primes > p_n such that p_n^2 * p_(n+1) * p_(n+2) * ... * p_(n+k) is an abundant number.
1, 3, 7, 16, 29, 44, 65, 89, 120, 155, 192, 236, 282, 332, 390, 453, 520, 589, 666, 746, 832, 927, 1026, 1131, 1239, 1350, 1467, 1592, 1725, 1867, 2017, 2161, 2313, 2469, 2634, 2800, 2975, 3155, 3339, 3532, 3729, 3931, 4143, 4356, 4579, 4809, 5051, 5291
Offset: 1
Keywords
Examples
a(2)=3 because the second prime being 3, then 3^2 * 5 * 7 * 11 = 3465 and sigma(3465) - 2*3465 = 558, a positive number (i.e., 3465 is abundant), but 3^2 * 5 * 7 = 315 and sigma(315) - 2*315 = -6, a nonpositive number (i.e., 315 is not abundant).
Links
- Carlos Rivera, Puzzle 329. Odd abundant numbers not divided by 2 or 3.
Programs
-
Mathematica
abQ[n_] := DivisorSigma[1, n] > 2n; f[0] = 0; f[n_] := f[n] = Block[{k = f[n - 1]}, p = Fold[Times, Prime[n], Prime[ Range[n, n + k]]]; While[ !abQ[p], k++; p = p*Prime[n + k]]; k]; Table[ f[n], {n, 48}] (* Robert G. Wilson v *)
-
PARI
forprime(p=2,100,k=0;while(k++,if(sigma(n=p^2*prod(j=1,k,prime(j+primepi(p))))-n>n,print(k);break)))
Extensions
Edited and extended by Robert G. Wilson v, Sep 15 2005
Comments