cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110597 Balanced numbers (A020492) k such that k mod 12 = 1.

Original entry on oeis.org

1, 1045, 29029, 50065, 64285, 87685, 1390753, 2011009, 3189625, 7711405, 39298441, 53238625, 68393065, 75416341, 96345613, 225938245, 228404605, 231562825, 233591605, 279999445, 458406445, 462027565, 470527057, 491291125, 513574369, 663605761, 666373825
Offset: 1

Views

Author

Walter Kehowski, Sep 13 2005

Keywords

Comments

For the first 27 terms, the quotient sigma(n)/phi(n) is 1, 2 or 3.

Crossrefs

Intersection of A017533 and A020492.

Programs

  • Maple
    with(numtheory); BNM1:=[]: for z from 1 to 1 do for m from 0 to 500000 do n:=12*m+1; if sigma(n) mod phi(n) = 0 then BNM1:=[op(BNM1),n] fi; od; od; BNM1;
  • Mathematica
    Select[Range[10^7], Mod[#, 12] == 1 && Divisible[DivisorSigma[1, #], EulerPhi[#]] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    forstep(n=1,1e5,12, if(sigma(n)%eulerphi(n)==0, print1(n", "))) \\ Charles R Greathouse IV, Nov 27 2013

Extensions

a(10)-a(27) from Donovan Johnson, Aug 30 2012