This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110614 #17 Feb 05 2017 07:13:51 %S A110614 1,5,15,57,215,841,3319,13193,52599,210057,839543,3356809,13424503, %T A110614 53692553,214759287,859015305,3436017527,13743982729,54975756151, %U A110614 219902675081,879610001271,3518438606985,14073751631735,56295000934537,225179992553335,900719947843721 %N A110614 a(n+3) = 5*a(n+2) - 2*a(n+1) - 8*a(n), a(0) = 1, a(1) = 5, a(2) = 15. %C A110614 See comment for A110613. %H A110614 Colin Barker, <a href="/A110614/b110614.txt">Table of n, a(n) for n = 0..1000</a> %H A110614 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-2,-8). %F A110614 G.f.: (1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)). %F A110614 a(n) + a(n+1) = A063376(n+1). %F A110614 a(n) = (-7*(-1)^n + 5*2^(1+n) + 3*4^(1+n)) / 15. - _Colin Barker_, Feb 05 2017 %p A110614 seriestolist(series((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2ibasejsumseq[(.5'i - .5'k - .5i' + .5k' - .5'ij' - .5'ji' - .5'jk' - .5'kj')('i + j' + 'ij' + 'ji')] Sumtype is set to: sum[Y[15]] = sum[ * ] (disregarding signs) %t A110614 LinearRecurrence[{5,-2,-8},{1,5,15},30] (* _Harvey P. Dale_, Dec 28 2013 *) %o A110614 (PARI) Vec((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)) + O(x^30)) \\ _Colin Barker_, Feb 05 2017 %Y A110614 Cf. A110613, A063376. %K A110614 easy,nonn %O A110614 0,2 %A A110614 _Creighton Dement_, Jul 31 2005