cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110616 A convolution triangle of numbers based on A001764.

This page as a plain text file.
%I A110616 #58 May 26 2025 09:52:57
%S A110616 1,1,1,3,2,1,12,7,3,1,55,30,12,4,1,273,143,55,18,5,1,1428,728,273,88,
%T A110616 25,6,1,7752,3876,1428,455,130,33,7,1,43263,21318,7752,2448,700,182,
%U A110616 42,8,1,246675,120175,43263,13566,3876,1020,245,52,9,1
%N A110616 A convolution triangle of numbers based on A001764.
%C A110616 Reflected version of A069269. - _Vladeta Jovovic_, Sep 27 2006
%C A110616 With offset 1 for n and k, T(n,k) = number of Dyck paths of semilength n for which all descents are of even length (counted by A001764) with no valley vertices at height 1 and with k returns to ground level. For example, T(3,2)=2 counts U^4 D^4 U^2 D^2, U^2 D^2 U^4 D^4 where U=upstep, D=downstep and exponents denote repetition. - _David Callan_, Aug 27 2009
%C A110616 Riordan array (f(x), x*f(x)) with f(x) = (2/sqrt(3*x))*sin((1/3)*arcsin(sqrt(27*x/4))). - _Philippe Deléham_, Jan 27 2014
%C A110616 Antidiagonals of convolution matrix of Table 1.4, p. 397, of Hoggatt and Bicknell. - _Tom Copeland_, Dec 25 2019
%H A110616 Peter Bala, <a href="/A033184/a033184.pdf">Factorisations of some Riordan arrays as infinite products</a>
%H A110616 Paul Barry, <a href="https://arxiv.org/abs/2504.09719">Notes on Riordan arrays and lattice paths</a>, arXiv:2504.09719 [math.CO], 2025. See pp. 27, 29.
%H A110616 Paul Barry, <a href="https://arxiv.org/abs/2505.16718">d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths</a>, arXiv:2505.16718 [math.CO], 2025. See p. 21.
%H A110616 Naiomi Cameron and J. E. McLeod, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/McLeod/mcleod3.html">Returns and Hills on Generalized Dyck Paths</a>, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
%H A110616 V. E. Hoggatt, Jr. and M. Bicknell, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/14-5/hoggatt1.pdf">Catalan and related sequences arising from inverses of Pascal's triangle matrices</a>, Fib. Quart., 14 (1976), 395-405.
%H A110616 Sheng-Liang Yang and L. J. Wang, <a href="https://ajc.maths.uq.edu.au/pdf/64/ajc_v64_p420.pdf">Taylor expansions for the m-Catalan numbers</a>, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431.
%F A110616 T(n, k) = Sum_{j>=0} T(n-1, k-1+j)*A000108(j); T(0, 0) = 1; T(n, k) = 0 if k < 0 or if k > n.
%F A110616 G.f.: 1/(1 - x*y*TernaryGF) = 1 + (y)x + (y+y^2)x^2 + (3y+2y^2+y^3)x^3 +... where TernaryGF = 1 + x + 3x^2 + 12x^3 + ... is the GF for A001764. - _David Callan_, Aug 27 2009
%F A110616 T(n, k) = ((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1). - _Vladimir Kruchinin_, Nov 01 2011
%e A110616 Triangle begins:
%e A110616        1;
%e A110616        1,      1;
%e A110616        3,      2,     1;
%e A110616       12,      7,     3,     1;
%e A110616       55,     30,    12,     4,    1;
%e A110616      273,    143,    55,    18,    5,    1;
%e A110616     1428,    728,   273,    88,   25,    6,   1;
%e A110616     7752,   3876,  1428,   455,  130,   33,   7,  1;
%e A110616    43263,  21318,  7752,  2448,  700,  182,  42,  8, 1;
%e A110616   246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1;
%e A110616   ...
%e A110616 From _Peter Bala_, Feb 04 2025: (Start)
%e A110616 The transposed array factorizes as an infinite product of upper triangular arrays:
%e A110616   / 1               \^T   /1             \^T /1             \^T / 1            \^T
%e A110616   | 1    1           |   | 1   1          | | 0  1           |  | 0  1          |
%e A110616   | 3    2   1       | = | 2   1   1      | | 0  1   1       |  | 0  0  1       | ...
%e A110616   |12    7   3   1   |   | 5   2   1  1   | | 0  2   1  1    |  | 0  0  1  1    |
%e A110616   |55   30  12   4  1|   |14   5   2  1  1| | 0  5   2  1  1 |  | 0  0  2  1  1 |
%e A110616   |...               |   |...             | |...             |  |...            |
%e A110616 where T denotes transposition and [1, 1, 2, 5, 14,...] is the sequence of Catalan numbers A000108. (End)
%t A110616 Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Jun 28 2017 *)
%o A110616 (Maxima) T(n,k):=((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1); /* _Vladimir Kruchinin_, Nov 01 2011 */
%Y A110616 Successive columns: A001764, A006013, A001764, A006629, A102893, A006630, A102594, A006631; row sums: A098746; see also A092276.
%K A110616 nonn,tabl
%O A110616 0,4
%A A110616 _Philippe Deléham_, Sep 14 2005, Jun 15 2007