This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110630 #7 Mar 10 2015 02:06:29 %S A110630 1,2,3,4,1,4,3,4,3,4,2,2,4,4,3,2,2,2,3,2,3,2,4,2,2,4,2,4,2,2,1,4,1,2, %T A110630 4,4,1,2,3,4,4,4,3,4,2,2,2,2,1,4,1,2,3,2,4,4,1,4,1,4,2,2,3,4,2,4,2,4, %U A110630 3,4,4,2,4,2,1,2,4,4,4,4,1,2,4,4,2,2,3,4,1,2,2,4,1,2,4,4,3,2,3,4,1,4,4,4,3 %N A110630 Every 2nd term of A083954 such that the self-convolution 2nd power is congruent modulo 8 to A083954, which consists entirely of numbers 1 through 4. %F A110630 a(n) = A083954(2*n) for n>=0. %e A110630 A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + x^4 + 4*x^5 + 3*x^6 + 4*x^7 +... %e A110630 A(x)^2 = 1 + 4*x + 10*x^2 + 20*x^3 + 27*x^4 + 36*x^5 + 44*x^6 +... %e A110630 A(x)^2 (mod 8) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 +... %e A110630 G083954(x) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 + 4*x^6 +... %e A110630 where G083954(x) is the g.f. of A083954. %o A110630 (PARI) {a(n)=local(d=2,m=4,A=1+m*x); for(j=2,d*n, for(k=1,m,t=polcoeff((A+k*x^j+x*O(x^j))^(1/m),j); if(denominator(t)==1,A=A+k*x^j;break)));polcoeff(A,d*n)} %Y A110630 Cf. A083954, A110629. %K A110630 nonn %O A110630 0,2 %A A110630 _Robert G. Wilson v_ and _Paul D. Hanna_, Aug 09 2005